首页> 外文期刊>Computational Social Systems, IEEE Transactions on >SocInf: Membership Inference Attacks on Social Media Health Data With Machine Learning
【24h】

SocInf: Membership Inference Attacks on Social Media Health Data With Machine Learning

机译:SocInf:通过机器学习对社交媒体健康数据进行成员身份推断攻击

获取原文
获取原文并翻译 | 示例

摘要

Social media networks have shown rapid growth in the past, and massive social data are generated which can reveal behavior or emotion propensities of users. Numerous social researchers leverage machine learning technology to build social media analytic models which can detect the abnormal behaviors or mental illnesses from the social media data effectively. Although the researchers only public the prediction interfaces of the machine learning models, in general, these interfaces may leak information about the individual data records on which the models were trained. Knowing a certain user's social media record was used to train a model can breach user privacy. In this paper, we present SocInf and focus on the fundamental problem known as membership inference. The key idea of SocInf is to construct a mimic model which has a similar prediction behavior with the public model, and then we can disclose the prediction differences between the training and testing data set by abusing the mimic model. With elaborated analytics on the predictions of the mimic model, SocInf can thus infer whether a given record is in the victim model's training set or not. We empirically evaluate the attack performance of SocInf on machine learning models trained by Xgboost, logistics, and online cloud platform. Using the realistic data, the experiment results show that SocInf can achieve an inference accuracy and precision of 73% and 84%, respectively, in average, and of 83% and 91% at best.
机译:社交媒体网络在过去已显示出快速的增长,并且生成了大量社交数据,这些数据可以揭示用户的行为或情感倾向。许多社会研究人员利用机器学习技术来构建社交媒体分析模型,该模型可以有效地从社交媒体数据中检测异常行为或精神​​疾病。尽管研究人员仅公开了机器学习模型的预测接口,但通常,这些接口可能会泄漏有关训练模型的各个数据记录的信息。知道某个用户的社交媒体记录已用于训练模型可能会破坏用户隐私。在本文中,我们介绍了SocInf并将重点放在称为隶属推理的基本问题上。 SocInf的关键思想是构建一个具有与公共模型相似的预测行为的模拟模型,然后我们可以通过滥用该模拟模型来揭示训练和测试数据集之间的预测差异。通过对模拟模型的预测进行详尽的分析,SocInf可以推断给定记录是否在受害者模型的训练集中。我们通过Xgboost,物流和在线云平台训练的机器学习模型,根据经验评估SocInf的攻击性能。使用实际数据,实验结果表明,SocInf可以分别平均达到73%和84%的推理准确度和精确度,最高可以达到83%和91%的推理准确度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号