首页> 外文期刊>Computational Optimization and Applications >Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization
【24h】

Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization

机译:基于匹配的预处理算法可解决大规模非凸内点优化中的鞍点问题

获取原文
获取原文并翻译 | 示例

摘要

Interior-point methods are among the most efficient approaches for solving large-scale nonlinear programming problems. At the core of these methods, highly ill-conditioned symmetric saddle-point problems have to be solved. We present combinatorial methods to preprocess these matrices in order to establish more favorable numerical properties for the subsequent factorization. Our approach is based on symmetric weighted matchings and is used in a sparse direct LDL T factorization method where the pivoting is restricted to static supernode data structures. In addition, we will dynamically expand the supernode data structure in cases where additional fill-in helps to select better numerical pivot elements. This technique can be seen as an alternative to the more traditional threshold pivoting techniques. We demonstrate the competitiveness of this approach within an interior-point method on a large set of test problems from the CUTE and COPS sets, as well as large optimal control problems based on partial differential equations. The largest nonlinear optimization problem solved has more than 12 million variables and 6 million constraints.
机译:内点法是解决大规模非线性规划问题的最有效方法之一。这些方法的核心是必须解决病情严重的对称鞍点问题。我们提出了组合方法来预处理这些矩阵,以便为后续的因式分解建立更有利的数值性质。我们的方法基于对称加权匹配,并用于稀疏直接LDL T 因式分解方法,该方法的数据透视只限于静态超节点数据结构。此外,在附加填充有助于选择更好的数值枢纽元素的情况下,我们将动态扩展超节点数据结构。该技术可以看作是更传统的阈值枢轴技术的替代方法。我们通过内点方法论证了该方法在CUTE和COPS集上的大量测试问题以及基于偏微分方程的大型最优控制问题上的竞争力。解决的最大非线性优化问题超过1200万个变量和600万个约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号