首页> 外文期刊>Computational methods and function theory >Root Sets of Polynomials and Power Series with Finite Choices of Coefficients
【24h】

Root Sets of Polynomials and Power Series with Finite Choices of Coefficients

机译:多项式和幂级数的根集以及系数的有限选择

获取原文
获取原文并翻译 | 示例

摘要

AbstractGiven$$Hsubseteq mathbb {C}$$HCtwo natural objects to study are the set of zeros of polynomials with coefficients inH,$$begin{aligned} left{ zin mathbb {C}: exists k>0,, exists (a_n)in H^{k+1}, sum _{n=0}^{k}a_{n}z^n=0right} , end{aligned}$$zC:k0,(an)Hk+1,n=0kanzn=0,and the set of zeros of a power series with coefficients inH,$$begin{aligned} left{ zin mathbb {C}: exists (a_n)in H^{mathbb {N}}, sum _{n=0}^{infty } a_nz^n=0right} . end{aligned}$$zC:(an)HN,n=0anzn=0.In this paper, we consider the case where each element ofHhas modulus 1. The main result of this paper states that for any$$rin (1/2,1),$$r(1/2,1),ifHis$$2cos ^{-1}(frac{5-4|r|^2}{4})$$2cos-1(5-4|r|24)-dense in$$S^1,$$S1,then the set of zeros of polynomials with coefficients inHis dense in$${zin {mathbb {C}}: |z|in [r,r^{-1}]},$${zC:|z|[r,r-1]},and the set of zeros of power series with coefficients inHcontains the annulus$${zin mathbb {C}: |z|in [r,1)}$${zC:|z|[r,1)}. These two statements demonstrate quantitatively how the set of polynomial zeros/power series zeros fill out the natural annulus containing them asHbecomes progressively more dense.
机译: Abstract Given $$ Hsubseteq mathbb {C} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> H C 要研究的两个自然对象是系数为 H ,<公式ID =“ Equ4”> $$ begin {aligned} left {zin mathbb {C}:存在k> 0,存在(a_n)在H ^ {k + 1}中,总和_ {n = 0} ^ {k} a_ {n} z ^ n = 0right},结束{aligned} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink” display =“ block”> z C k 0 ,< / mo> a n H < mi> k + 1 n = 0 k a n z n = 0 H $$ begin {aligned} left {zin mathbb {C}:存在(a_n )在H ^ {mathbb {N}}中,总和_ {n = 0} ^ {infty} a_nz ^ n = 0right}。 end {aligned} $$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink” display =“ block”> z C a n H N n < / mi> = 0 a n z n = 0 ,在这种情况下,我们考虑 H 的每个元素均具有模数1。本文的主要结果表明,对于任何 $$ rin(1 / 2,1),$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> r < mo Stretchy =“ false”>( 1 / 2 < mn> 1 if H $$ 2cos ^ {-1}(frac {5-4 | r | ^ 2} {4})$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> 2 cos - 1 5 - 4 | r | 2 < mn> 4 - $$ S ^ 1,$$ <数学xmlns:xlink =“ http://www.w3.org/1999/xlink”> < mi> S 1 ,则在 H 的多项式的零集密集=“ IEq5”> $$ {zin {mathbb {C}}:| z | in [r,r ^ {-1}]},$$ <数学xmlns:xlink =“ http ://www.w3.org/1999/xlink“> { z C | z | < / mo> [ r r - 1 ] } 以及系数为 H 包含环形 $$ {zin mathbb {C}:| z | in [r,1)} $$ <数学xmlns:xlink =“ http ://www.w3.org/1999/xlink“> { z C | z | < / mo> [ r 1 } 。这两个语句定量地证明了多项式零/幂级数零的集合如何填充包含它们的自然环,因为 H 变得越来越密集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号