首页> 外文期刊>Computational Mechanics >Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models
【24h】

Phase transitions in shape memory alloys with hyperbolic heat conduction and differential-algebraic models

机译:具有双曲导热和微分代数模型的形状记忆合金的相变

获取原文
获取原文并翻译 | 示例

摘要

The dynamics of phase transitions and hysteresis phenomena in materials with memory are described by a strongly nonlinear coupled system of partial differential equations which, in its generality, can be solved only numerically. Following principles of extended thermodynamics, in this paper we construct a new model for the description of this dynamics based on the Cattaneo–Vernotte law for heat conduction. Models based on the Fourier law follow from this general consideration as special cases. We develop a general procedure for the solution of the resulting systems by their reduction to differential-algebraic systems. Finally, a computational code for the numerical implementation of this procedure is explained in detail, and representative numerical examples are given.
机译:带有记忆的材料中相变和磁滞现象的动力学是由偏微分方程的强非线性耦合系统描述的,一般来说,它只能用数值方法求解。遵循扩展热力学原理,在本文中,我们基于Cattaneo-Vernotte热传导定律构造了一个描述此动力学的新模型。基于傅立叶定律的模型是作为特殊情况从此一般考虑中得出的。通过将它们简化为微分代数系统,我们为解决所得系统开发了一种通用程序。最后,详细说明了此过程的数值实现的计算代码,并给出了代表性的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号