首页> 外文期刊>Computational Mechanics >Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods
【24h】

Nodally exact Ritz discretizations of 1D diffusion–absorption and Helmholtz equations by variational FIC and modified equation methods

机译:变分FIC和修正方程方法对一维扩散吸收方程和Helmholtz方程进行精确的Ritz离散化

获取原文
获取原文并翻译 | 示例

摘要

This article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions
机译:本文介绍了有限积分(FIC)在Ritz-FEM变分框架中的首次应用。 FIC提供了网格尺寸的步长参数化,可用于修改形状函数。该方法适用于稳态,一维,扩散吸收和亥姆霍兹方程的FEM离散化。参数化的线性形状函数直接插入FIC函数中。生成的Ritz-FIC方程是对称的,并带有来自函数修改过程的元素级自由参数。研究了恒定系数和可变系数的情况。结果表明,该参数可用于产生常数系数情况下的名义精确解。通过将Ritz-FIC方程的有限阶修正微分方程(FOMoDE)与原始场方程匹配,可以找到最佳值。检查了在模板上下文中是否包含Ritz-FIC模型。这种包含表明,对于常数系数情况,存在无数的名义精确模型。这些方法的组成部分(FIC,Ritz,MoDE和模板)可以扩展到多个维度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号