首页> 外文期刊>Computational Mechanics >Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method
【24h】

Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method

机译:使用基于子域的无通量方法的线性固体力学问题的严格误差范围

获取原文
获取原文并翻译 | 示例

摘要

We discuss, in this paper, a flux-free method for the computation of strict upper bounds of the energy norm of the error in a Finite Element (FE) computation. The bounds are strict in the sense that they refer to the difference between the displacement computed on the FE mesh and the exact displacement, solution of the continuous equations, rather than to the difference between the displacements computed on two FE meshes, one coarse and one refined. This method is based on the resolution of a series of local problems on patches of elements and does not require the resolution of a previous problem of flux equilibration, as happens with other methods. The paper concentrates more specifically on linear solid mechanics issues, and on the assessment of the energy norm of the error, seen as a necessary tool for the estimation of the error in arbitrary quantities of interest (linear functional outputs). Applications in both 2D and 3D are presented.
机译:在本文中,我们讨论了一种无磁通方法,用于计算有限元(FE)计算中的误差能量范数的严格上限。边界是严格的,因为它们是指有限元网格上计算的位移与连续方程的精确位移之间的差,连续方程的解,而不是指两个有限元网格上计算的位移之间的差。精制。该方法基于元素补丁上一系列局部问题的解决方案,并且不需要像其他方法那样解决先前的通量平衡问题。本文更具体地关注线性固体力学问题,以及对误差能量范数的评估,这被视为评估任意感兴趣量(线性函数输出)中误差的必要工具。介绍了2D和3D的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号