首页> 外文期刊>Computational management science >Path loss prediction in urban environment using learning machines and dimensionality reduction techniques
【24h】

Path loss prediction in urban environment using learning machines and dimensionality reduction techniques

机译:使用学习机和降维技术预测城市环境中的路径损耗

获取原文
获取原文并翻译 | 示例

摘要

Path loss prediction is a crucial task for the planning of networks in modern mobile communication systems. Learning machine-based models seem to be a valid alternative to empirical and deterministic methods for predicting the propagation path loss. As learning machine performance depends on the number of input features, a good way to get a more reliable model can be to use techniques for reducing the dimensionality of the data. In this paper we propose a new approach combining learning machines and dimensionality reduction techniques. We report results on a real dataset showing the efficiency of the learning machine-based methodology and the usefulness of dimensionality reduction techniques in improving the prediction accuracy.
机译:路径损耗预测是现代移动通信系统中网络规划的关键任务。基于学习机的模型似乎是用于预测传播路径损耗的经验和确定性方法的有效替代方法。由于学习机的性能取决于输入特征的数量,因此,获得更可靠模型的一种好方法是使用降低数据维数的技术。在本文中,我们提出了一种结合学习机和降维技术的新方法。我们在一个真实的数据集上报告结果,该数据集显示了基于学习机的方法的效率以及降维技术在提高预测精度方面的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号