首页> 外文期刊>Computational management science >Constructing optimal sparse portfolios using regularization methods
【24h】

Constructing optimal sparse portfolios using regularization methods

机译:使用正则化方法构造最优的稀疏投资组合

获取原文
获取原文并翻译 | 示例

摘要

Mean-variance portfolios have been criticized because of unsatisfying out-of-sample performance and the presence of extreme and unstable asset weights, especially when the number of securities is large. The bad performance is caused by estimation errors in inputs parameters, that is the covariance matrix and the expected return vector. Recent studies show that imposing a penalty on the 1-norm of the asset weights vector (i.e. ℓ_1-regularization) not only regularizes the problem, thereby improving the out-of-sample performance, but also allows to automatically select a subset of assets to invest in. However, ℓ_1-regularization might lead to the construction of biased solutions. We propose a new, simple type of penalty that explicitly considers financial information and then we consider several alternative penalties, that allow to improve on the ℓ_1-regularization approach. By using U.S.-stock market data, we show empirically that the proposed penalties can lead to the construction of portfolios with an out-of-sample performance superior to several state-of-art benchmarks, especially in high dimensional problems.
机译:均值方差投资组合受到批评,因为其样本外表现不令人满意,并且资产权重过高且不稳定,尤其是在证券数量很大时。性能不佳是由输入参数(即协方差矩阵和期望的返回向量)中的估计误差引起的。最近的研究表明,对资产权重向量的1范数施加惩罚(即ℓ_1-正则化)不仅可以使问题正规化,从而提高样本外性能,还可以自动选择资产的子集但是,However_1-正则化可能会导致构造有偏差的解决方案。我们提出一种新的,简单的惩罚类型,明确考虑财务信息,然后考虑几种替代惩罚,以改善allow_1正规化方法。通过使用美国股票市场数据,我们从经验上表明拟议的罚款可以导致投资组合的构造具有超出几个最新基准的样本外性能,尤其是在高维问题上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号