首页> 外文期刊>Computational Intelligence >Neural network prediction of bioleaching of metals from waste computer printed circuit boards using Levenberg-Marquardt algorithm
【24h】

Neural network prediction of bioleaching of metals from waste computer printed circuit boards using Levenberg-Marquardt algorithm

机译:利用Levenberg-Marquardt算法从废计算机印刷电路板生物浸出的神经网络预测

获取原文
获取原文并翻译 | 示例

摘要

The applicability of artificial neural network (ANN) to predict the bioleaching of metals using from computer printed circuit boards (CPCB) and the influence of process parameters were studied. The influence of process parameters initial pH (1.6-2.4), pulp density (2%-13%), and the initial volume of Inoculum (5%-25%) were investigated on the rate of bioleaching of metals from CPCB. Network inputs were fed as initial pH, pulp density, and inoculum volume and with the extraction of Cu, Ag, and Au as output. The ANN was developed using the Levenberg-Marquardt algorithm and trained for modeling and prediction. The most fitting architectures for Cu, Ag, and Au were [4-5-5-2-1], [4-7-5-2-1], [4-7-1-1-1] trained with Levenberg-Marquardt algorithm, respectively. The R values were observed to be 0.996, 0.997, and 0.993 for Cu, Ag, and Au extraction predictions, respectively. The genetic algorithm model defined by ANN was used to achieve maximum extraction rates for Cu, Au, and Ag. The predicted data showed that there is a great capability of using ANN for the prediction of Cu, Ag, and Au extraction from CPCB through bioleaching process. Hence, the ANN model can be used to control the operational conditions for improved metals extraction through bioleaching.
机译:研究了人工神经网络(ANN)预测来自计算机印刷电路板(CPCB)的金属生物浸出的适用性和工艺参数的影响。对初始pH(1.6-2.4),纸浆密度(2%-13%)和接种物的初始体积(5%-25%)的影响,对来自CPCB的金属的生物浸出速率研究,初始pH(1.6-2.4)和初始体积(5%-25%)。将网络输入作为初始pH,纸浆密度和接种体积喂养,并用Cu,Ag和Au提取作为输出。 ANN是使用Levenberg-Marquardt算法开发的,并培训用于建模和预测。 Cu,Ag和Au最适合的架构[4-5-5-2-1],[4-7-5-2-1],[4-7-1-1-1],[4-7-1-1-1]训练雷涅贝格-Marquardt算法。对于Cu,Ag和Au提取预测,将r值观察到0.996,0.997和0.993。由ANN定义的遗传算法模型用于实现Cu,Au和Ag的最大提取速率。预测的数据显示,使用ANN用于预测Cu,Ag和通过生物浸入过程从CPCB提取的能力具有很大的能力。因此,ANN模型可用于控制通过生物浸出改善金属提取的操作条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号