首页> 外文期刊>Computational Intelligence >An improved long short-term memory networks with Takagi-Sugeno fuzzy for traffic speed prediction considering abnormal traffic situation
【24h】

An improved long short-term memory networks with Takagi-Sugeno fuzzy for traffic speed prediction considering abnormal traffic situation

机译:考虑异常交通状况的交通速度预测,一种改进的长短期内存网络,用于交通速度预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic speed prediction is an emerging paradigm for achieving a better transportation system in smart cities and improving the heavy traffic management in the intelligent transportation system (ITS). The accurate traffic speed prediction is affected by many contextual factors such as abnormal traffic conditions, traffic incidents, lane closures due to construction or events, and traffic congestion. To overcome these problems, we propose a new method named fuzzy optimized long short-term memory (FOLSTM) neural network for long-term traffic speed prediction. FOLSTM technique is a hybrid method composed of computational intelligence (CI), machine learning (ML), and metaheuristic techniques, capable of predicting the speed for macroscopic traffic key parameters. First, the proposed hybrid unsupervised learning method, agglomerated hierarchical K-means (AHK) clustering, divides the input samples into a group of clusters. Second, based on parameters the Gaussian bell-shaped fuzzy membership function calculates the degree of membership (high, low, and medium) for each cluster using Takagi-Sugeno fuzzy rules. Finally, the whale optimization algorithm (WOA) is used in LSTM to optimize the parameters obtained by fuzzy rules and calculate the optimal weight value. FOLSTM evaluates the accurate traffic speed from the abnormal traffic data to overcome the nonlinear characteristics. Experimental results demonstrated that our proposed method outperforms the state-of-the-art approaches in terms of metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
机译:交通速度预测是一种新兴范式,用于在智能城市实现更好的运输系统,提高智能交通系统中的繁重交通管理(其)。准确的交通速度预测受许多上下文因素的影响,例如交通状况异常,交通事故,由于建筑或事件而导致的道路关闭,以及交通拥堵。为了克服这些问题,我们提出了一种名为Fuzzy优化的长短期内存(Folstm)神经网络的新方法,用于长期交通速度预测。 Folstm技术是由计算智能(CI),机器学习(ML)和成群质技术组成的混合方法,能够预测宏观交通密钥参数的速度。首先,提出的混合无监督学习方法,附着的分层K-Meance(AHK)聚类,将输入样本分成一组簇。其次,基于参数,高斯钟形模糊隶属函数使用Takagi-Sugeno模糊规则计算每个群集的成员资格(高,低和中等)。最后,在LSTM中使用鲸鱼优化算法(WOA)以优化通过模糊规则获得的参数并计算最佳权重值。 Folstm从异常的交通数据评估准确的流量速度以克服非线性特性。实验结果表明,我们所提出的方法在均线误差(MSE)等度量方面优于最先进的方法,根均线误差(RMSE),平均绝对误差(MAE),以及平均绝对百分比误差(mape)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号