首页> 外文期刊>Computational Intelligence >Detecting community structure in complex networks using genetic algorithm based on object migrating automata
【24h】

Detecting community structure in complex networks using genetic algorithm based on object migrating automata

机译:基于对象迁移自动机的遗传算法检测复杂网络中的社区结构

获取原文
获取原文并翻译 | 示例

摘要

AbstractCommunity structure is an important topological feature of complex networks. Detecting community structure is a highly challenging problem in analyzing complex networks and has great importance in understanding the function and organization of networks. Up until now, numerous algorithms have been proposed for detecting community structure in complex networks. A wide range of these algorithms use the maximization of a quality function called modularity. In this article, three different algorithms, namely, MEM‐net, OMA‐net, and GAOMA‐net, have been proposed for detecting community structure in complex networks. In GAOMA‐net algorithm, which is the main proposed algorithm of this article, the combination of genetic algorithm (GA) and object migrating automata (OMA) has been used. In GAOMA‐net algorithm, the MEM‐net algorithm has been used as a heuristic to generate a portion of the initial population. The experiments on both real‐world and synthetic benchmark networks indicate that GAOMA‐net algorithm is efficient for detecting community structure in complex networks.
机译:AbstractCommunity结构是复杂网络的重要拓扑特征。检测社区结构是在分析复杂网络方面的一个高度挑战性问题,并且非常重视了解网络功能和组织。到目前为止,已经提出了许多算法用于检测复杂网络中的社区结构。广泛的这些算法使用称为模块化的质量函数的最大化。在本文中,已经提出了三种不同的算法,即MEM-Net,OMA-Net和高表网,用于检测复杂网络中的社区结构。在Gaoma-Net算法中,这是本文主要所提出的算法,已经使用了遗传算法(GA)和对象迁移自动机(OMA)的组合。在高清网络算法中,MEM-Net算法已被用作生成初始群体的一部分的启发式算法。关于现实世界和合成基准网络的实验表明,Gaoma-Net算法对于检测复杂网络中的社区结构是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号