首页> 外文期刊>Computational Intelligence >Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm
【24h】

Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm

机译:基于协同进化核糖核酸遗传算法的质子交换膜燃料电池参数推导

获取原文
获取原文并翻译 | 示例

摘要

Precise modeling of a polymer electrolyte membrane fuel cell (PEMFC) is a crucial issue in analyzing and controlling electrical energy production. In this paper, a novel semiexperimental model is proposed for forecasting of PEMFC output voltage. As well, the coevolution ribonucleic acid genetic algorithm (coRNA-GA) is presented as a novel estimation approach for determination of proposed model coefficients. This optimization method is motivated by the biological RNA, encodes the chromosomes by RNA nucleotide basics, and accepts a few RNA operations. This paper proposed several genetic operators to preserve the diversity of particles, and two sets from particles are chosen using various validation functions. In these two subpopulations, different evolutionary methods have been employed for balancing of seeking and extraction. Input pressure of cathode is chosen in this paper as a further parameter for modifying the depiction of concentration overvoltage (V-con) in the case of conventional Amphlett's PEMFC system. Finally, the performance of the coRNA-GA algorithm, as well as the precision of the obtained model, is authenticated via empirical results. Also, the obtained results are compared with some other methods, and the superiority of the proposed model is demonstrated in voltage prediction accuracy.
机译:聚合物电解质膜燃料电池(PEMFC)的精确建模是分析和控制电能产生的关键问题。本文提出了一种新的半实验模型来预测PEMFC的输出电压。同样,提出了协同进化核糖核酸遗传算法(coRNA-GA)作为确定拟议模型系数的一种新颖估计方法。这种优化方法是由生物RNA激发的,通过RNA核苷酸基础知识对染色体进行编码,并接受一些RNA操作。本文提出了几种遗传算子来保存粒子的多样性,并使用各种验证函数从粒子中选择了两组。在这两个亚群中,采用了不同的进化方法来平衡寻找和提取。在常规Amphlett的PEMFC系统中,本文选择阴极的输入压力作为进一步修改浓度过电压(V-con)描述的参数。最后,通过经验结果验证了coRNA-GA算法的性能以及所获得模型的精度。此外,将获得的结果与其他一些方法进行比较,并证明了该模型在电压预测精度方面的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号