首页> 外文期刊>Computational Intelligence >AN INTEGRATED INSTANCE-BASED LEARNING ALGORITHM
【24h】

AN INTEGRATED INSTANCE-BASED LEARNING ALGORITHM

机译:一种基于实例的集成学习算法

获取原文
获取原文并翻译 | 示例

摘要

The basic nearest-neighbor rule generalizes well in many domains but has several shortcomings, including inappropriate distance functions, large storage requirements, slow execution time, sensitivity to noise, and an inability to adjust its decision boundaries after storing the training data. This paper proposes methods for overcoming each of these weaknesses and combines the methods into a comprehensive learning system called the Integrated Decremental Instance-Based Learning Algorithm (IDIBL) that seeks to reduce storage, improve execution speed, and increase generalization accuracy, when compared to the basic nearest neighbor algorithm and other learning models. IDIBL tunes its own parameters using a new measure of fitness that combines confidence and cross-validation accuracy in order to avoid discretization problems with more traditional leave-one-out cross-validation. In our experiments IDIBL achieves higher generalization accuracy than other less comprehensive instance-based learning algorithms, while requiring less than one-fourth the storage of the nearest neighbor algorithm and improving execution speed by a corresponding factor. In experiments on twenty-one data sets, IDIBL also achieves higher generalization accuracy than that reported for sixteen major machine learning and neural network models.
机译:基本的最近邻居规则在许多领域中普遍适用,但是存在一些缺点,包括不适当的距离函数,较大的存储要求,执行时间慢,对噪声敏感以及在存储训练数据后无法调整其决策边界。本文提出了克服这些弱点的方法,并将这些方法组合到一个称为集成减量基于实例的学习算法(IDIBL)的综合学习系统中,该系统旨在与之相比减少存储量,提高执行速度并提高泛化准确性。基本的最近邻居算法和其他学习模型。 IDIBL使用适合度的新方法来调整自己的参数,该方法结合了置信度和交叉验证的准确性,可以避免离散化问题和更传统的留一法交叉验证。在我们的实验中,IDIBL比其他较不全面的基于实例的学习算法具有更高的泛化精度,同时所需的存储量不到最近邻居算法的四分之一,并且执行速度提高了相应的倍数。在针对21个数据集的实验中,IDIBL的泛化精度也比针对16种主要机器学习和神经网络模型的泛化精度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号