首页> 外文期刊>Computational Intelligence >ADAPTIVE RANKS CLONE AND k-NEAREST NEIGHBOR LIST-BASED IMMUNE MULTI-OBJECTIVE OPTIMIZATION
【24h】

ADAPTIVE RANKS CLONE AND k-NEAREST NEIGHBOR LIST-BASED IMMUNE MULTI-OBJECTIVE OPTIMIZATION

机译:自适应秩和k-近邻邻居列表的免疫多目标优化

获取原文
获取原文并翻译 | 示例

摘要

Artificial immune systems (AIS) are computational systems inspired by the principles and processes of the vertebrate immune system. The AlS-based algorithms typically exploit the immune system's characteristics of learning and adaptability to solve some complicated problems. Although, several AlS-based algorithms have proposed to solve multi-objective optimization problems (MOPs), little focus have been placed on the issues that adaptively use the online discovered solutions. Here, we proposed an adaptive selection scheme and an adaptive ranks clone scheme by the online discovered solutions in different ranks. Accordingly, the dynamic information of the online antibody population is efficiently exploited, which is beneficial to the search process. Furthermore, it has been widely approved that one-off deletion could not obtain excellent diversity in the final population; therefore, a k-nearest neighbor list (where k is the number of objectives) is established and maintained to eliminate the solutions in the archive population. The k-nearest neighbors of each antibody are founded and stored in a list memory. Once an antibody with minimal product of k-nearest neighbors is deleted, the neighborhood relations of the remaining antibodies in the list memory are updated. Finally, the proposed algorithm is tested on 10 well-known and frequently used multi-objective problems and two many-objective problems with 4, 6, and 8 objectives. Compared with five other state-of-the-art multi-objective algorithms, namely NSGA-II, SPEA2, IBEA, HYPE, and NNIA, our method achieves comparable results in terms of convergence, diversity metrics, and computational time.
机译:人工免疫系统(AIS)是受脊椎动物免疫系统原理和过程启发的计算系统。基于AlS的算法通常利用免疫系统的学习特征和适应性来解决一些复杂的问题。尽管已经提出了几种基于AlS的算法来解决多目标优化问题(MOP),但很少将注意力放在自适应地使用在线发现的解决方案的问题上。在这里,我们通过在线发现的不同等级的解决方案,提出了一种自适应选择方案和一种自适应等级克隆方案。因此,可以有效地利用在线抗体种群的动态信息,这对搜索过程有利。此外,已被广泛认可的是,一次性删除不能在最终种群中获得优异的多样性。因此,建立并维护了k个最近的邻居列表(其中k是目标数)以消除归档总体中的解决方案。建立每种抗体的k个近邻,并将其存储在列表存储器中。一旦删除了具有k近邻的最小乘积的抗体,列表存储器中其余抗体的邻域关系就会更新。最后,该算法在10个著名且经常使用的多目标问题和两个具有4、6和8个目标的多目标问题上进行了测试。与其他五个最新的多目标算法(即NSGA-II,SPEA2,IBEA,HYPE和NNIA)相比,我们的方法在收敛性,多样性指标和计算时间方面均达到了可比的结果。

著录项

  • 来源
    《Computational Intelligence》 |2010年第4期|p.359-385|共27页
  • 作者单位

    Key Laboratory of Intellignet Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi 'an, PR. China;

    rnKey Laboratory of Intellignet Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi 'an, PR. China;

    rnKey Laboratory of Intellignet Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi 'an, PR. China;

    rnKey Laboratory of Intellignet Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi 'an, PR. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    evolutionary computation; artificial immune system; multi-objective optimization; many-objective optimization; adaptive ranks clone; k-nearest neighbors;

    机译:进化计算人工免疫系统;多目标优化;多目标优化;适应性等级克隆k最近邻居;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号