首页> 外文期刊>Computational Intelligence >HIGH-PRECISION BIO-MOLECULAR EVENT EXTRACTION FROM TEXT USING PARALLEL BINARY CLASSIFIERS
【24h】

HIGH-PRECISION BIO-MOLECULAR EVENT EXTRACTION FROM TEXT USING PARALLEL BINARY CLASSIFIERS

机译:使用并行二进制分类器从文本中提取高精度生物分子事件

获取原文
获取原文并翻译 | 示例

摘要

We have developed a machine learning framework to accurately extract complex genetic interactions from text. Employing type-specific classifiers, this framework processes research articles to extract various biological events. Subsequently, the algorithm identifies regulation events that take other events as arguments, allowing a nested structure of predictions. All predictions are merged into an integrated network, useful for visualization and for deduction of new biological knowledge. In this paper, we discuss several design choices for an event-based extraction framework. These detailed studies help improving on existing systems, which is illustrated by the relative performance gain of 10% of our system compared to the official results in the recent BioNLP'09 Shared Task. Our framework now achieves state-of-the-art performance with 37.43 recall, 54.81 precision and 44.48 F-score. We further present the first study of feature selection for bio-molecular event extraction from text. While producing more cost-effective models, feature selection can also lead to a better insight into the complexity of the challenge. Finally, this paper tries to bridge the gap between theoretical relation extraction from text and experimental work on bio-molecular interactions by discussing interesting opportunities to employ event-based text mining tools for real-life tasks such as hypothesis generation, database curation and knowledge discovery.
机译:我们已经开发了一种机器学习框架,可以从文本中准确提取复杂的遗传相互作用。利用特定于类型的分类器,此框架处理研究文章以提取各种生物事件。随后,该算法识别以其他事件为变量的调节事件,从而允许嵌套的预测结构。所有预测都合并到一个集成网络中,对于可视化和推论新的生物学知识很有用。在本文中,我们讨论了基于事件的提取框架的几种设计选择。这些详细的研究有助于改进现有系统,与最近的BioNLP'09 Shared Task中的官方结果相比,我们系统的相对性能提高了10%。现在,我们的框架以37.43的查全率,54.81的精度和44.48的F分数实现了最先进的性能。我们进一步提出了从文本中提取生物分子事件的特征选择的第一个研究。在生成更具成本效益的模型时,特征选择还可以更好地洞察挑战的复杂性。最后,本文试图通过讨论有趣的机会来利用基于事件的文本挖掘工具来执行诸如假设生成,数据库管理和知识发现等现实任务的有趣机会,从而弥合文本理论联系和生物分子相互作用实验之间的差距。 。

著录项

  • 来源
    《Computational Intelligence》 |2011年第4期|p.645-664|共20页
  • 作者单位

    Department of Plant Systems Biology, VIB, Gent, Belgium,Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium;

    Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Gent, Belgium;

    Department of Plant Systems Biology, VIB, Gent, Belgium,Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium;

    Department of Plant Systems Biology, VIB, Gent, Belgium,Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    BioNLP; machine learning; text mining.;

    机译:BioNLP;机器学习文本挖掘。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号