首页> 外文期刊>Computational Intelligence >MINING APPROXIMATE REPEATING PATTERNS FROM SEQUENCE DATA WITH GAP CONSTRAINTS
【24h】

MINING APPROXIMATE REPEATING PATTERNS FROM SEQUENCE DATA WITH GAP CONSTRAINTS

机译:利用GAP约束从序列数据中挖掘近似的重复模式

获取原文
获取原文并翻译 | 示例

摘要

The rapid increase of available DNA, protein, and other biological sequences has made the problem of discovering meaningful patterns from sequences an important task for Bioinformatics research. Among all types of patterns defined in the literature, the most challenging one is to find repeating patterns with gap constraints. In this article, we identify a new research problem for mining approximate repeating patterns (ARPs) with gap constraints, where the appearance of a pattern is subject to an approximate match, which is very common in biological sequences. To solve the problem, we propose an ArpGap (ARP mining with Gap constraints) algorithm with three major components for ARP mining: (1) a data-driven pattern generation approach to avoid generating unnecessary candidates for validation; (2) a back-tracking pattern search process to discover approximate occurrences of a pattern under user specified gap constraints; and (3) an Apriori-like deterministic pruning approach to progressively prune patterns and cease the search process if necessary. Experimental results on synthetic and real-world protein sequences assert that ArpGap is efficient in terms of memory consumption and computational cost. The results further suggest that the proposed method is practical for discovering approximate patterns for protein sequences where the sequence length is usually several hundreds to one thousand and the pattern length is relatively short.
机译:可用DNA,蛋白质和其他生物序列的迅速增加,使得从序列中发现有意义的模式成为了生物信息学研究的重要任务。在文献中定义的所有类型的模式中,最具挑战性的一种是找到具有间隙约束的重复模式。在本文中,我们确定了一个新的研究问题,该问题用于挖掘具有间隙约束的近似重复模式(ARP),其中模式的外观受到近似匹配的影响,这在生物序列中非常普遍。为了解决该问题,我们提出了一种ArpGap(具有Gap约束的ARP挖掘)算法,该算法具有ARP挖掘的三个主要组成部分:(1)一种数据驱动的模式生成方法,以避免生成不必要的候选者进行验证; (2)回溯模式搜索过程,以发现在用户指定的间隙约束下模式的近似出现; (3)一种类似Apriori的确定性修剪方法,用于逐渐修剪模式并在必要时停止搜索过程。关于合成和现实世界蛋白质序列的实验结果证明,ArpGap在内存消耗和计算成本方面非常有效。结果进一步表明,所提出的方法对于发现蛋白质序列的近似模式是实用的,其中序列长度通常为几百到一千,并且模式长度相对较短。

著录项

  • 来源
    《Computational Intelligence》 |2011年第3期|p.336-362|共27页
  • 作者

    Dan He; Xingquan Zhu; Xindong Wu;

  • 作者单位

    Department of Computer Science, University of California Los Angeles, Los Angeles, California, USA;

    Faculty of Engineering & Information Technology, University of Technology, Sydney, Australia,Department of Computer Science & Engineering, Florida Atlantic University, Boca Raton, Florida, USA;

    School of Computer Science & Information Engineering, Hefei University of Technology, Hefei, China,Department of Computer Science, University of Vermont, Burlington, Vermont, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    frequent pattern mining; gap constraints; dynamic programming; approximate patterns;

    机译:频繁的模式挖掘;差距约束;动态编程近似模式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号