首页> 外文期刊>Computational Intelligence >Toward personalized and adaptive QoS assessments via context awareness
【24h】

Toward personalized and adaptive QoS assessments via context awareness

机译:通过上下文感知进行个性化和自适应QoS评估

获取原文
获取原文并翻译 | 示例

摘要

Quality of Service (QoS) properties play an important role in distinguishing between functionally equivalent services and accommodating the different expectations of users. However, the subjective nature of some properties and the dynamic and unreliable nature of service environments may result in cases where the quality values advertised by the service provider are either missing or untrustworthy. To tackle this, a number of QoS estimation approaches have been proposed, using the observation history available on a service to predict its performance. Although the context underlying such previous observations (and corresponding to both user and service related factors) could provide an important source of information for the QoS estimation process, it has only been used to a limited extent by existing approaches. In response, we propose a context-aware quality learning model, realized via a learning-enabled service agent, exploiting the contextual characteristics of the domain to provide more personalized, accurate, and relevant quality estimations for the situation at hand. The experiments conducted demonstrate the effectiveness of the proposed approach, showing promising results (in terms of prediction accuracy) in different types of changing service environments.
机译:服务质量(QoS)属性在区分功能等效的服务和适应用户的不同期望方面起着重要作用。但是,某些属性的主观性质以及服务环境的动态和不可靠性质可能会导致服务提供者广告的质量值丢失或不可信的情况。为了解决这个问题,已经提出了许多QoS估计方法,使用服务上可用的观察历史来预测其性能。尽管此类先前观察的基础环境(并与用户和服务相关的因素相对应)可以为QoS估计过程提供重要的信息源,但是现有方法仅在有限的程度上使用了它。作为回应,我们提出了一个上下文感知质量学习模型,该模型通过启用学习的服务代理来实现,它利用域的上下文特征为当前情况提供更多个性化,准确且相关的质量估计。进行的实验证明了该方法的有效性,在不同类型的不断变化的服务环境中显示了令人鼓舞的结果(就预测准确性而言)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号