首页> 外文期刊>IEEE computational intelligence magazine >Automatic Tuning of Rule-Based Evolutionary Machine Learning via Problem Structure Identification
【24h】

Automatic Tuning of Rule-Based Evolutionary Machine Learning via Problem Structure Identification

机译:通过问题结构识别自动调整规则的进化机学习

获取原文
获取原文并翻译 | 示例

摘要

The success of any machine learning technique depends on the correct setting of its parameters and, when it comes to large-scale datasets, hand-tuning these parameters becomes impractical. However, very large-datasets can be pre-processed in order to distil information that could help in appropriately setting various systems parameters. In turn, this makes sophisticated machine learning methods easier to use to end-users. Thus, by modelling the performance of machine learning algorithms as a function of the structure inherent in very large datasets one could, in principle, detect "hotspots" in the parameters' space and thus, auto-tune machine learning algorithms for better dataset-specific performance. In this work we present a parameter setting mechanism for a rule-based evolutionary machine learning system that is capable of finding the adequate parameter value for a wide variety of synthetic classification problems with binary attributes and with/without added noise. Moreover, in the final validation stage our automated mechanism is able to reduce the computational time of preliminary experiments up to 71% for a challenging real-world bioinformatics dataset.
机译:任何机器学习技术的成功取决于其参数的正确设置,并且当涉及大规模数据集时,手工调整这些参数变得不切实际。然而,可以预先处理非常大的数据集,以便蒸馏可以帮助适当地设置各种系统参数的信息。反过来,这使得复杂的机器学习方法更容易用于最终用户。因此,通过根据非常大的数据集中固有的结构的函数来模拟机器学习算法的性能,原则上可以检测参数空间中的“热点”,因此,用于更好的数据集特定的自动调谐机学习算法表现。在这项工作中,我们为基于规则的演化机学习系统提供了一个参数设置机制,该系统能够找到具有二进制属性的各种合成分类问题的适当参数值,以及与/不添加噪声。此外,在最终验证阶段,我们的自动化机制能够将初步实验的计算时间降低至71%,以实现挑战的现实世界生物信息学数据集。

著录项

  • 来源
    《IEEE computational intelligence magazine》 |2020年第3期|28-46|共19页
  • 作者单位

    Newcastle Univ Sch Comp Interdisciplinary Comp & Complex BioSyst ICOS Res Newcastle Upon Tyne Tyne & Wear England;

    Newcastle Univ Sch Comp Interdisciplinary Comp & Complex BioSyst ICOS Res Newcastle Upon Tyne Tyne & Wear England;

    Newcastle Univ Sch Comp Interdisciplinary Comp & Complex BioSyst ICOS Res Newcastle Upon Tyne Tyne & Wear England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号