首页> 外文期刊>Computational Intelligence and AI in Games, IEEE Transactions on >Fingerprint Analysis of the Noisy Prisoner's Dilemma Using a Finite-State Representation
【24h】

Fingerprint Analysis of the Noisy Prisoner's Dilemma Using a Finite-State Representation

机译:使用有限状态表示法对嘈杂的囚徒困境进行指纹分析

获取原文
获取原文并翻译 | 示例

摘要

Fingerprinting is a technique that permits automatic classification of strategies for playing a game. In this paper, the evolution of strategies for playing the iterated prisoner's dilemma (IPD) at three different noise levels is analyzed using fingerprinting and other techniques including a novel quantity, evolutionary velocity, derived from fingerprinting. The results are at odds with initial expectations and permit the detection of a critical difference in the evolution of agents with and without noise. Noise during fitness evaluation places a larger fraction of an agent's genome under selective pressure, resulting in substantially more efficient training. In this case, efficiency is the production of superior competitive ability at a lower evolutionary velocity. Prisoner's dilemma playing agents are evolved for 6400 generations, taking samples at eight exponentially spaced epochs. This permits assessment of the change in populations over long evolutionary time. Agents are evaluated for competitive ability between those evolved for different lengths of time and between those evolved using distinct noise levels. The presence of noise during agent training is found to convey a commanding competitive advantage. A novel analysis is done in which a tournament is run with no two agents from the same evolutionary line and one third of agents from each noise level studied. This analysis simulates contributed agent tournaments without any genetic relation between agents. It is found that in early epochs the agents evolved without noise have the best average tournament rank, but that in later epochs they have the worst.
机译:指纹识别是一种允许对玩游戏的策略进行自动分类的技术。在本文中,使用指纹图谱和其他技术(包括从指纹图谱得出的新颖数量,进化速度)分析了在三种不同噪声水平下播放迭代囚徒困境(IPD)策略的演变。结果与最初的预期相矛盾,并且可以检测出有无噪声的药剂演化过程中的关键差异。适应性评估过程中的噪声使代理商基因组的很大一部分处于选择性压力之下,从而导致实质上更有效的训练。在这种情况下,效率是以较低的进化速度产生出众的竞争能力。囚徒困境游戏代理已经发展了6400代,并在八个指数间隔的时间采样。这样可以评估长期进化过程中种群的变化。评估代理在不同时间长度内演化的代理之间以及使用不同噪声水平演化的代理之间的竞争能力。人们发现,在特工培训期间出现噪音可以传达出明显的竞争优势。进行了一种新颖的分析,即在没有任何来自同一进化路线的代理人和来自每个研究噪声水平的代理人三分之一的情况下进行比赛。该分析模拟了特工之间的比赛,而特工之间没有任何遗传关系。结果发现,在早期,没有噪音的代理商的平均锦标赛排名最高,但是在后期,代理商的平均排名最差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号