首页> 外文期刊>Computational Intelligence and AI in Games, IEEE Transactions on >Distributed Monte Carlo Tree Search: A Novel Technique and its Application to Computer Go
【24h】

Distributed Monte Carlo Tree Search: A Novel Technique and its Application to Computer Go

机译:分布式蒙特卡洛树搜索:一种新技术及其在计算机Go中的应用

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo tree search (MCTS) has brought about great success regarding the evaluation of stochastic and deterministic games in recent years. We present and empirically analyze a data-driven parallelization approach for MCTS targeting large HPC clusters with Infiniband interconnect. Our implementation is based on OpenMPI and makes extensive use of its RDMA based asynchronous tiny message communication capabilities for effectively overlapping communication and computation. We integrate our parallel MCTS approach termed UCT-Treesplit in our state-of-the-art Go engine Gomorra and measure its strengths and limitations in a real-world setting. Our extensive experiments show that we can scale up to 128 compute nodes and 2048 cores in self-play experiments and, furthermore, give promising directions for additional improvement. The generality of our parallelization approach advocates its use to significantly improve the search quality of a huge number of current MCTS applications.
机译:近年来,蒙特卡洛树搜索(MCTS)在评估随机和确定性游戏方面取得了巨大的成功。我们提出并针对以Infiniband互连为目标的大型HPC集群针对MCTS的数据驱动并行化方法进行分析。我们的实现基于OpenMPI,并充分利用其基于RDMA的异步小消息通信功能来有效地重叠通信和计算。我们将称为UCT-Treesplit的并行MCTS方法集成到我们最新的Go引擎Gomorra中,并在实际环境中测量其优势和局限性。我们广泛的实验表明,在自播放实验中,我们最多可以扩展128个计算节点和2048个内核,并且为进一步改进提供了有希望的方向。我们的并行化方法的一般性主张使用它来显着提高大量当前MCTS应用程序的搜索质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号