首页> 外文期刊>Computational Imaging, IEEE Transactions on >Hyperspectral Unmixing Via Turbo Bilinear Approximate Message Passing
【24h】

Hyperspectral Unmixing Via Turbo Bilinear Approximate Message Passing

机译:通过Turbo双线性近似消息传递进行高光谱分解

获取原文
获取原文并翻译 | 示例

摘要

The goal of hyperspectral unmixing is to decompose an electromagnetic spectral dataset measured over spectral bands and pixels into constituent material spectra (or “endmembers”) with corresponding spatial abundances. In this paper, we propose a novel approach to hyperspectral unmixing based on loopy belief propagation (BP) that enables the exploitation of spectral coherence in the endmembers and spatial coherence in the abundances. In particular, we partition the factor graph into spectral coherence, spatial coherence, and bilinear subgraphs, and pass messages between them using a “turbo” approach. To perform message passing within the bilinear subgraph, we employ the bilinear generalized approximate message passing algorithm (BiG-AMP), a recently proposed belief-propagation-based approach to matrix factorization. Furthermore, we propose an expectation-maximization (EM) strategy to tune the prior parameters and a model-order selection strategy to select the number of materials . Numerical experiments conducted with both synthetic and real-world data show favorable unmixing performance relative to existing methods.
机译:高光谱分解的目的是将在光谱带和像素上测得的电磁光谱数据集分解为具有相应空间丰度的组成材料光谱(或“端成员”)。在本文中,我们提出了一种基于循环置信传播(BP)的高光谱解混新方法,该方法可以利用端成员中的光谱相干性和丰度中的空间相干性。特别是,我们将因子图划分为频谱相干性,空间相干性和双线性子图,并使用“ turbo”方法在它们之间传递消息。为了在双线性子图中执行消息传递,我们采用了双线性广义近似消息传递算法(BiG-AMP),这是一种最近提出的基于置信传播的矩阵分解方法。此外,我们提出了期望最大化(EM)策略来调整先验参数,并提出了模型顺序选择策略来选择材料数量。使用合成数据和实际数据进行的数值实验表明,相对于现有方法而言,其良好的解混性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号