首页> 外文期刊>Computational Imaging, IEEE Transactions on >Combining Local Regularity Estimation and Total Variation Optimization for Scale-Free Texture Segmentation
【24h】

Combining Local Regularity Estimation and Total Variation Optimization for Scale-Free Texture Segmentation

机译:结合局部正则估计和总变化优化实现无尺度纹理分割

获取原文
获取原文并翻译 | 示例

摘要

Texture segmentation constitutes a standard image processing task, crucial for many applications. The present contribution focuses on the particular subset of scale-free textures and its originality resides in the combination of three key ingredients: First, texture characterization relies on the concept of local regularity; Second, estimation of local regularity is based on new multiscale quantities referred to as wavelet leaders; Third, segmentation from local regularity faces a fundamental bias variance tradeoff. In nature, local regularity estimation shows high variability that impairs the detection of changes, while a posteriori smoothing of regularity estimates precludes from locating correctly changes. Instead, the present contribution proposes several variational problem formulations based on total variation and proximal resolutions that effectively circumvent this tradeoff. Estimation and segmentation performance for the proposed procedures are quantified and compared on synthetic as well as on real-world textures.
机译:纹理分割构成标准的图像处理任务,对于许多应用程序而言至关重要。目前的贡献集中在无鳞纹理的特定子集上,其独创性在于三个关键要素的组合:首先,纹理表征依赖于局部规则性的概念;其次,局部规律性的估计基于称为小波前导的新多尺度量;第三,从局部规律性进行分割面临着基本的偏差方差折衷。实际上,局部规律性估计显示出高可变性,从而损害了变化的检测,而规律性估计的后验平滑则无法正确定位变化。取而代之的是,本论文基于总变化量和近端分辨率提出了几种变化问题公式,有效地规避了这种折衷。对拟议程序的估计和分割性能进行了量化,并在合成纹理和真实纹理上进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号