首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging
【24h】

A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging

机译:用于联合图像去噪和插值的贝叶斯超先验方法及其在HDR成像中的应用

获取原文
获取原文并翻译 | 示例

摘要

Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this paper, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: First, it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g., inpainting of missing pixels or zooming). Second, it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme.
机译:最近,通过贝叶斯方法已经获得了令人印象深刻的去噪结果,该方法采用高斯模型作为图像斑块。性能的提高可以归因于每个补丁模型的使用。不幸的是,这种方法对于除降噪之外的大多数逆问题尤其不稳定。在本文中,我们建议使用hyperprior对图像斑块进行建模,以稳定估计过程。所提出的恢复方案有两个主要优点:首先,它适用于对角退化矩阵,尤其是丢失的数据问题(例如,丢失像素的修复或缩放)。其次,它可以处理与信号有关的噪声模型,特别适用于数码相机。这样,该方案特别适合于计算摄影。为了说明这一点,我们提供了从使用修改过的传感器拍摄的单个图像进行的高动态范围成像的应用,这表明了所提出方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号