首页> 外文期刊>Computational Imaging, IEEE Transactions on >Direct Image Reconstruction of Lissajous-Type Magnetic Particle Imaging Data Using Chebyshev-Based Matrix Compression
【24h】

Direct Image Reconstruction of Lissajous-Type Magnetic Particle Imaging Data Using Chebyshev-Based Matrix Compression

机译:基于Chebyshev的矩阵压缩对李萨如型磁性粒子成像数据的直接图像重建

获取原文
获取原文并翻译 | 示例

摘要

Image reconstruction in magnetic particle imaging (MPI) is done using an algebraic approach for Lissajous-type measurement sequences. By solving a large linear system of equations, the spatial distribution of magnetic nanoparticles can be determined. Despite the use of iterative solvers that converge rapidly, the size of the MPI system matrix leads to reconstruction times that are typically much longer than the actual data acquisition time. For this reason, matrix compression techniques have been introduced that transform the MPI system matrix into a sparse domain and then utilize this sparsity for accelerated reconstruction. Within this work, we investigate the Chebyshev transformation for matrix compression and show that it can provide better reconstruction results for high compression rates than the commonly applied Cosine transformation. By reducing the number of coefficients per matrix row to one, it is even possible to derive a direct reconstruction method that obviates the usage of iterative solvers.
机译:使用李沙育类型的测量序列的代数方法完成了磁粉成像(MPI)中的图像重建。通过求解方程的大型线性系统,可以确定磁性纳米粒子的空间分布。尽管使用了快速收敛的迭代求解器,但MPI系统矩阵的大小导致重构时间通常比实际数据采集时间长得多。由于这个原因,已经引入了矩阵压缩技术,该技术将MPI系统矩阵转换为稀疏域,然后利用这种稀疏性来加速重建。在这项工作中,我们研究了Chebyshev变换用于矩阵压缩的情况,并表明与常规的余弦变换相比,它可以为高压缩率提供更好的重建结果。通过将每个矩阵行的系数数量减少到一个,甚至有可能获得避免迭代求解器使用的直接重建方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号