首页> 外文期刊>Computational Imaging, IEEE Transactions on >Robust Fusion of Multiband Images With Different Spatial and Spectral Resolutions for Change Detection
【24h】

Robust Fusion of Multiband Images With Different Spatial and Spectral Resolutions for Change Detection

机译:鲁棒融合具有不同空间和光谱分辨率的多波段图像以进行变化检测

获取原文
获取原文并翻译 | 示例

摘要

Archetypal scenarios for change detection generally consider two images acquired through sensors of the same modality. However, in some specific cases such as emergency situations, the only images available may be those acquired through different kinds of sensors. More precisely, this paper addresses the problem of detecting changes between two multiband optical images characterized by different spatial and spectral resolutions. This sensor dissimilarity introduces additional issues in the context of operational change detection. To alleviate these issues, classical change detection methods are applied after independent preprocessing steps (e.g., resampling) used to get the same spatial and spectral resolutions for the pair of observed images. Nevertheless, these preprocessing steps tend to throw away relevant information. Conversely, in this paper, we propose a method that more effectively uses the available information by modeling the two observed images as spatial and spectral versions of two (unobserved) latent images characterized by the same high spatial and high spectral resolutions. As they cover the same scene, these latent images are expected to be globally similar except for possible changes in sparse spatial locations. Thus, the change detection task is envisioned through a robust multiband image fusion method, which enforces the differences between the estimated latent images to be spatially sparse. This robust fusion problem is formulated as an inverse problem, which is iteratively solved using an efficient block-coordinate descent algorithm. The proposed method is applied to real panchromatic, multispectral, and hyperspectral images with simulated realistic and real changes. A comparison with state-of-the-art change detection methods evidences the accuracy of the proposed strategy.
机译:用于变化检测的原型方案通常考虑通过相同模态的传感器获取的两个图像。但是,在某些特定情况下,例如紧急情况,唯一可用的图像可能是通过不同类型的传感器获取的图像。更准确地说,本文解决了检测以空间和光谱分辨率不同为特征的两个多波段光学图像之间变化的问题。这种传感器的差异性在操作变化检测的背景下引入了其他问题。为了减轻这些问题,在独立的预处理步骤(例如,重采样)之后使用经典的变化检测方法,以对这对观察到的图像获得相同的空间和光谱分辨率。但是,这些预处理步骤往往会丢弃相关信息。相反,在本文中,我们提出了一种通过将两个观察到的图像建模为两个(未观察到的)潜像的空间和光谱版本来更有效地利用可用信息的方法,这些潜像具有相同的高空间和高光谱分辨率。由于它们覆盖相同的场景,因此这些潜在图像除了稀疏的空间位置可能发生变化之外,在总体上应该是相似的。因此,通过鲁棒的多频带图像融合方法可以预见变化检测任务,该方法将估计的潜像之间的差异强制为空间稀疏的。这个鲁棒的融合问题被公式化为一个反问题,可以使用有效的块坐标下降算法来迭代求解。该方法适用于模拟真实和真实变化的真实全色,多光谱和高光谱图像。与最新变化检测方法的比较证明了所提出策略的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号