首页> 外文期刊>Computational Imaging, IEEE Transactions on >Unsupervised Data Driven Feature Extraction by Means of Mutual Information Maximization
【24h】

Unsupervised Data Driven Feature Extraction by Means of Mutual Information Maximization

机译:通过互信息最大化的无监督数据驱动特征提取

获取原文
获取原文并翻译 | 示例

摘要

In Earth observations technical literature, several methods have been proposed and implemented to efficiently extract a proper set of features for classification and segmentation purposes. However, these architectures show drawbacks when the considered datasets are characterized by complex interactions among the samples, especially when they rely on strong assumptions on noise and label domains. In this paper, a new unsupervised approach for feature extraction, based on data driven discovery, is introduced for accurate classification of remotely sensed data. Specifically, the proposed architecture exploits mutual information maximization in order to retrieve the most relevant features with respect to information measures. Experimental results on real datasets show that the proposed approach represents a valid framework for feature extraction from remote sensing images.
机译:在地球观测技术文献中,已经提出并实施了几种方法,以有效地提取适当的一组特征用于分类和分割。但是,当所考虑的数据集以样本之间的复杂交互为特征时,尤其是当它们依赖于对噪声和标签域的强大假设时,这些体系结构会显示出缺点。本文介绍了一种基于数据驱动发现的无监督特征提取新方法,用于对遥感数据进行准确分类。具体地,所提出的体系结构利用相互信息最大化,以便检索关于信息度量的最相关的特征。在真实数据集上的实验结果表明,该方法为从遥感影像中提取特征提供了有效的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号