首页> 外文期刊>Computational Imaging, IEEE Transactions on >Information-Driven Adaptive Structured-Light Scanners
【24h】

Information-Driven Adaptive Structured-Light Scanners

机译:信息驱动的自适应结构光扫描仪

获取原文
获取原文并翻译 | 示例

摘要

Sensor planning and active sensing, long studied in robotics, adapt sensor parameters to maximize a utility function while constraining resource expenditures. Here, we consider information gain as the utility function. While these concepts are often used to reason about 3D sensors, these are usually treated as a predefined black-box component. In this paper, we show how the same principles can be used as part of the 3D sensor. We describe the generative model for structured-light 3D scanning and show how adaptive pattern selection can maximize information gain in an open-loop-feedback manner. We then demonstrate how different choices of relevant variable sets (corresponding to the subproblems of localization and mapping) lead to different criteria for pattern selection and can be computed in an online fashion. We show results for both subproblems with several pattern dictionary choices and demonstrate their usefulness for pose estimation and depth acquisition.
机译:传感器规划和主动传感在机器人技术领域进行了长期研究,可以调整传感器参数以最大限度地发挥效用功能,同时限制资源支出。在这里,我们将信息获取视为效用函数。虽然这些概念通常用于推理3D传感器,但通常将它们视为预定义的黑匣子组件。在本文中,我们展示了如何将相同的原理用作3D传感器的一部分。我们描述了结构光3D扫描的生成模型,并展示了自适应模式选择如何以开环反馈的方式最大化信息增益。然后,我们演示了相关变量集的不同选择(对应于局部化和映射的子问题)如何导致模式选择的不同标准,并且可以在线方式进行计算。我们用两个模式字典选择显示了这两个子问题的结果,并展示了它们对姿势估计和深度获取的有用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号