首页> 外文期刊>Computational Imaging, IEEE Transactions on >Coded Aperture Optimization in X-Ray Tomography via Sparse Principal Component Analysis
【24h】

Coded Aperture Optimization in X-Ray Tomography via Sparse Principal Component Analysis

机译:通过稀疏主成分分析的X射线断层扫描中的编码光圈优化

获取原文
获取原文并翻译 | 示例

摘要

Coded aperture X-ray computed tomography (CAXCT) systems reconstruct high quality images of the inner structure of an object from a few coded illumination measurements. Since the computed tomography (CT) system matrix is highly structured, random coded apertures lead to lower quality image reconstructions. In this paper, the noisy forward models of CAXCT in both Gaussian noise and Poisson noise are formulated and analyzed. In addition, a coded aperture optimization approach based on sparse principal component analysis is proposed to maximize the information sensed by a set of fan-beam projections. The complexity of the proposed optimization method is on the same order of magnitude as that of state-of-the-art methods but provide superior image quality. Computational experiments using simulated datasets and real datasets show gains up to $sim$4.3 dB with SNR = 25 dB in the reconstruction image quality compared with that attained by random coded apertures.
机译:编码孔径X射线计算机断层扫描(CAXCT)系统从少数编码的照明测量开始重建对象的内部结构的高质量图像。由于计算机断层扫描(CT)系统矩阵高度结构化,因此随机编码孔径导致较低的质量图像重建。本文制定和分析了高斯噪声和泊松噪声中CAXCT的嘈杂前向模型。另外,提出了一种基于稀疏主成分分析的编码孔径优化方法,以最大化由一组风扇光束投影感测的信息。所提出的优化方法的复杂性与最先进的方法相同,但提供卓越的图像质量。使用模拟数据集和实际数据集的计算实验显示增益<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ SIM $ 4.3 DB在SNR = 25 dB中,在重建图像质量中与随机编码孔径达到的相比。

著录项

  • 来源
    《Computational Imaging, IEEE Transactions on》 |2020年第2020期|73-86|共14页
  • 作者单位

    Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense Nanjing University of Science and Technology Nanjing China;

    Department of Electrical and Computer Engineering University of Delaware Newark DE USA;

    Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China School of Optics and Photonics Beijing Institute of Technology Beijing China;

    Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense Nanjing University of Science and Technology Nanjing China;

    Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense Nanjing University of Science and Technology Nanjing China;

    Department of Electrical and Computer Engineering University of Delaware Newark DE USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Apertures; X-ray imaging; Computed tomography; Image reconstruction; Detectors; Attenuation;

    机译:孔;X射线成像;计算断层扫描;图像重建;探测器;衰减;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号