首页> 外文期刊>Computational Imaging, IEEE Transactions on >SISTER: Spectral-Image Similarity-Based Tensor With Enhanced-Sparsity Reconstruction for Sparse-View Multi-Energy CT
【24h】

SISTER: Spectral-Image Similarity-Based Tensor With Enhanced-Sparsity Reconstruction for Sparse-View Multi-Energy CT

机译:姐妹:基于光谱图像相似性的张量,具有增强稀疏性重建的稀疏视图多能量CT

获取原文
获取原文并翻译 | 示例

摘要

Multi-energy computed tomography (MCT) has a great potential in material decomposition, tissue characterization, lesion detection, and other applications. However, the severe noise that exists within projections makes it difficult to obtain high-quality MCT images. To overcome this limitation, we propose a method termed Spectral-Image Similarity-based Tensor with Enhanced-sparsity Reconstruction (SISTER) method. SISTER utilizes the non-local feature similarity in the spatial-spectral domain by clustering similar spatial-spectral patches within non-local window-to a 4th-order tensor group. Compared with the image gradient L0-norm with tensor dictionary learning (L0TDL) method, by adopting tensor decomposition rather than tensor dictionary learning, SISTER overcomes the instability of tensor dictionary. Besides, in our SISTER method the weight coefficients update strategy is also optimized. Both numerical simulation and preclinical dataset were performed to evaluate and validate the performance of SISTER. Qualitative and quantitative results show that the proposed method can lead to a promising improvement of edge preservation, finer feature recovery, and noise suppression.
机译:多能量计算断层扫描(MCT)具有巨大的材料分解,组织表征,病变检测和其他应用。然而,投影中存在的严重噪声使得难以获得高质量的MCT图像。为了克服这种限制,我们提出了一种具有增强稀疏重构(姐妹)方法的基于光谱图像相似性的张量的方法。姐姐通过在非本地窗口内聚类类似的空间频谱补丁来利用空间光谱域中的非局部特征相似性 - 到第四阶Tensor组。与图像梯度L相比 0 - 与张统称法典学习(L 0 TDL)方法,通过采用张量分解而不是张量字典学习,姐姐克服了张量字典的不稳定性。此外,在我们的姐妹方法中,还优化了权重系数更新策略。执行数值模拟和临床前数据集以评估和验证姐妹的性能。定性和定量结果表明,该方法可以导致优化的边缘保存,更精细的特征回收和噪声抑制。

著录项

  • 来源
    《Computational Imaging, IEEE Transactions on》 |2020年第2020期|477-490|共14页
  • 作者单位

    Laboratory of Image Science and Technology Southeast University Nanjing China;

    Key Lab of Optoelectronic Technology and Systems Ministry of Education Chongqing University Chongqing China;

    Laboratory of Image Science and Technology Southeast University Nanjing China;

    Department of Electrical and Computer Engineering University of Massachusetts Lowell Lowell MA USA;

    College of Computer and Information Anhui Polytechnic University Wuhu China;

    Laboratory of Image Science and Technology Southeast University Nanjing China;

    Laboratory of Image Science and Technology Southeast University Nanjing China;

    Laboratory of Image Science and Technology Southeast University Nanjing China;

    Institut Mines-Telecom Telecom Bretagne;

    INSERM U1101 LaTIM 29238 Brest France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tensile stress; Image reconstruction; Computed tomography; Dictionaries; Machine learning; Photonics;

    机译:拉伸应力;图像重建;计算断层扫描;词典;机器学习;光子学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号