首页> 外文期刊>Computational Geosciences >Forward modelling of geophysical electromagnetic data on unstructured grids using an adaptive mimetic finite-difference method
【24h】

Forward modelling of geophysical electromagnetic data on unstructured grids using an adaptive mimetic finite-difference method

机译:使用自适应模拟有限差分法向非结构化网格的地球物理电磁数据向前建模

获取原文
获取原文并翻译 | 示例

摘要

While the mimetic finite-difference method shares many similarities with the finite-element and finite-volume methods, it has the advantage of naturally accommodating grids with arbitrary polyhedral elements. In this study, we use this attribute to develop an adaptive scheme for the solution of the geophysical electromagnetic modelling problem on unstructured grids. Starting with an initial tetrahedral grid, our mesh adaptivity implements an iterative h-refinement where a residual- and jump-based goal-oriented error estimator is used to mark a certain portion of the elements. The marked elements are decomposed into new tetrahedra by regular subdivision, creating an octree-like unstructured grid. Since arbitrary polyhedra are naturally permitted in the mimetic finite-difference method, the added nodes are not regarded as hanging nodes and hence any level of non-conformity can be implemented without a modification to the mimetic scheme. In this study, we consider 2-irregularity where two levels of non-conformity between the adjacent elements is permitted. We use a total field approach where the electric field is defined at the edges of the polyhedral elements and the electromagnetic source may have an arbitrary shape and location. The accuracy of the mimetic scheme and the effectiveness of the proposed mesh adaptivity are verified using benchmark and realistic examples that represent various magnetotelluric and controlled-source survey scenarios. The mesh adaptivity generates grids with refinement generally concentrated at the transmitter and receiver locations and the interfaces of materials with contrasting conductivities, and the mimetic finite-difference solutions have good agreement with the reference numerical and real data. We also demonstrate the practicality of our method using an example with an analytical solution and comparison with a standard mesh regeneration technique. The results show that our mesh adaptivity procedure can result in a higher accuracy, with similar numbers of elements, when compared with the mesh regeneration approach. Also, using a generic sparse direct solver, our method is found to be more efficient than the mesh regeneration approach in terms of computation time and memory usage. Moreover, a comparison between 1- and 2-irregularity shows the higher efficiency of the latter in terms of the number of elements required to reach a certain level of accuracy.
机译:虽然模拟有限差分方法与有限元和有限体积方法共享许多相似性,但它具有自然容纳具有任意多面体元件的网格的优点。在这项研究中,我们使用该属性来开发用于解开网格上的地球物理电磁建模问题的自适应方案。从初始四面体网格开始,我们的网格适应性实现了一种迭代的H-改进,其中使用残差和基于跳跃的目标误差估计器来标记元素的某个部分。标记的元素通过规则的细分分解成新的四面体,创建八十类似的非结构化网格。由于任意多面体在模拟有限差分方法中自然允许,因此添加的节点不被视为悬挂节点,因此可以在没有修改模拟方案的情况下实现任何级别的不符合性。在这项研究中,我们考虑了2-不规则性,其中允许相邻元件之间的两个不符合性。我们使用总场方法,其中电场在多面体元件的边缘处限定,电磁源可以具有任意形状和位置。使用基准和现实示例验证了模拟方案的准确性和所提出的网格适应性的有效性,该实际示例表示各种磁通尿和控制源调查场景。网格适应性产生具有通常集中在发射机和接收器位置的细化的网格,以及具有对比传导性的材料的界面,而模拟有限差分解决方案与参考数字和真实数据具有良好的一致性。我们还使用具有分析解决方案的示例和与标准网格再生技术进行比较来证明我们的方法的实用性。结果表明,与网格再生方法相比,我们的网格适应性过程可导致更高的精度,具有相似数量的元素。此外,使用通用稀疏直接解器,我们的方法在计算时间和内存使用方面,我们的方法比网格再生方法更有效。此外,1-和2 - 不规则性之间的比较显示了达到一定准确级别所需的元件数量的后者的更高效率。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号