首页> 外文期刊>Computational Geosciences >Element balance formulation in reactive compositional flow and transport with parameterization technique
【24h】

Element balance formulation in reactive compositional flow and transport with parameterization technique

机译:参数化技术在反应性组分流和运移中的元素平衡公式化

获取原文
获取原文并翻译 | 示例

摘要

We present a novel nonlinear formulation for modeling reactive-compositional flow and transport in the presence of complex phase behavior due to a combination of thermodynamic and chemical equilibria in multi-phase systems. We apply this formulation to model precipitation/dissolution of minerals in reactive multiphase flow in subsurface reservoirs. The proposed formulation is based on the consistent element balance reduction of the molar (overall composition) formulation. To predict the complex phase behavior in such systems, we include the chemical equilibrium constraints to the multiphase multicomponent negative flash calculations and solve the thermodynamic phase and chemical phase equilibria simultaneously. In this solution, the phase equilibrium is represented by the partition coefficients, whereas the chemical equilibrium reaction is represented by the activity coefficients model. This provides a generic treatment of chemical and thermodynamic equilibrium within the successive substitution loop of multiphase flash to accommodate chemical equilibrium reactions (precipitation and dissolution reactions). Equilibrium Rate Annihilation matrix allows us to reduce the governing component conservation equations to element conservation equations, while the coupling between chemical and thermodynamic equilibrium is captured by a simultaneous solution of modified multiphase flash equations. The element balance equation written in terms of overall component mole fractions is modified and defined in terms of element mole fractions. Therefore, the primary set of governing equations are the element balance equations and the kinetic equations. This element composition of the mixture serves as an input to the modified multiphase flash computations, whereas the output is fractions of components in each phase, including solids. The nonlinear element—based governing equations are solved with the modified version of the operator-based linearization (OBL) approach where the governing equations are formulated in terms of space- and state-dependent parameters constrained by the solution of the extended multiphase flash. The element balance molar formulation along with the modified multiphase flash has been tested in a simple transport model with dissolution and precipitation reactions. The simulation of multidimensional problems of practical interest has been performed using the adaptive OBL technique. This is the first time when a robust multiphase multicomponent flash based on element fractions is coupled with an element balance-based compositional formulation and tested for multidimensional problems of practical interest. The proposed technique improves both robustness and performance of complex chemical models.
机译:由于多相系统中热力学和化学平衡的结合,我们提出了一种新颖的非线性公式,用于在复杂相行为存在下对反应成分流和运输进行建模。我们将该公式应用于地下储层反应性多相流中矿物的沉淀/溶解模型。提出的配方基于摩尔配方(整体组成)配方中元素平衡的减少。为了预测此类系统中的复杂相行为,我们将化学平衡约束条件包括在多相多组分负闪蒸计算中,并同时解决热力学相和化学相平衡问题。在该解决方案中,相平衡由分配系数表示,而化学平衡反应由活性系数模型表示。这为多相闪蒸的连续替换循环内的化学和热力学平衡提供了通用的处理方法,以适应化学平衡反应(沉淀和溶解反应)。平衡速率An灭矩阵使我们可以将控制组分守恒方程简化为元素守恒方程,而化学和热力学平衡之间的耦合则通过修改后的多相闪蒸方程的同时求解来捕获。以总组分摩尔分数表示的元素平衡方程被修改和定义为以元素摩尔分数的形式定义。因此,主要的控制方程组是元素平衡方程和动力学方程。混合物的这种元素组成用作修改后的多相闪蒸计算的输入,而输出是每个相中包括固体在内的组分的分数。使用基于算子的线性化(OBL)方法的改进版本解决了基于非线性元素的控制方程,其中,控制方程是根据与空间和状态有关的参数来表示的,这些参数受扩展的多相闪光的解约束。在具有溶解和沉淀反应的简单传输模型中,已经测试了元素平衡摩尔配方以及改进的多相闪蒸。使用自适应OBL技术已经对具有实际意义的多维问题进行了仿真。这是首次将基于元素分数的稳健的多相多组分闪蒸与基于元素平衡的成分配方结合使用,并针对实际关注的多维问题进行测试。所提出的技术提高了复杂化学模型的鲁棒性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号