首页> 外文期刊>Computational Geosciences >Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method
【24h】

Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method

机译:使用与边界元法耦合的储层模拟器对裂缝中的流体注入进行建模

获取原文
获取原文并翻译 | 示例

摘要

We describe an algorithm for modeling saturated fractures in a poroelastic domain in which the reservoir simulator is coupled with a boundary element method. A fixed stress splitting is used on the underlying fractured Biot system to iteratively couple fluid and solid mechanics systems. The fluid system consists of Darcy's law in the reservoir and is computed with a multipoint flux mixed finite element method, and a Reynolds' lubrication equation in the fracture solved with a mimetic finite difference method. The mechanics system consists of linear elasticity in the reservoir and is computed with a continuous Galerkin method, and linear elasticity in the fracture is solved with a weakly singular symmetric Galerkin boundary element method. This algorithm is able to compute both unknown fracture width and unknown fluid leakage rate. An interesting numerical example is presented with an injection well inside of a circular fracture.
机译:我们描述了一种在孔隙弹性域中对饱和裂缝建模的算法,其中储层模拟器与边界元方法结合在一起。在下面的断裂Biot系统上使用固定应力分裂,以迭代方式耦合流体和固体力学系统。流体系统由储层中的达西定律组成,并采用多点通量混合有限元法计算,而裂缝中的雷诺兹润滑方程则采用模拟有限差分法求解。力学系统由储层中的线性弹性组成,并采用连续Galerkin方法进行计算,而裂缝中的线性弹性则采用弱奇异对称Galerkin边界元方法求解。该算法能够计算未知的裂缝宽度和未知的流体泄漏率。给出了一个有趣的数值示例,该示例在圆形裂缝内部注入了一个注入井。

著录项

  • 来源
    《Computational Geosciences》 |2014年第5期|613-624|共12页
  • 作者单位

    Center for Subsurface Modeling, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;

    Center for Subsurface Modeling, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;

    Center for Subsurface Modeling, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;

    Center for Subsurface Modeling, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;

    Center for Subsurface Modeling, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Saturated fracture; Poroelasticity; Multipoint flux mixed finite element; Mimetic finite difference; Galerkin finite element; Boundary element;

    机译:饱和断裂;孔隙弹性多点磁通混合有限元;模拟有限差分;Galerkin有限元;边界元素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号