首页> 外文期刊>Computational Geosciences >An efficient distribution method for nonlinear two-phase flow in highly heterogeneous multidimensional stochastic porous media
【24h】

An efficient distribution method for nonlinear two-phase flow in highly heterogeneous multidimensional stochastic porous media

机译:高异质多维随机多孔介质中非线性两相流的有效分布方法

获取原文
获取原文并翻译 | 示例

摘要

In the context of stochastic two-phase flow in porous media, we introduce a novel and efficient method to estimate the probability distribution of the wetting saturation field under uncertain rock properties in highly heterogeneous porous systems, where streamline patterns are dominated by permeability heterogeneity, and for slow displacement processes (viscosity ratio close to unity). Our method, referred to as the frozen streamline distribution method (FROST), is based on a physical understanding of the stochastic problem. Indeed, we identify key random fields that guide the wetting saturation variability, namely fluid particle times of flight and injection times. By comparing saturation statistics against full-physics Monte Carlo simulations, we illustrate how this simple, yet accurate FROST method performs under the preliminary approximation of frozen streamlines. Further, we inspect the performance of an accelerated FROST variant that relies on a simplification about injection time statistics. Finally, we introduce how quantiles of saturation can be efficiently computed within the FROST framework, hence leading to robust uncertainty assessment.
机译:在多孔介质中随机两相流的情况下,我们引入了一种新颖有效的方法来估计高度非均质多孔系统中不确定岩石属性下润湿饱和场的概率分布,在该系统中,流线型态以渗透率非均质性为主导,并且用于慢速位移过程(粘度比接近于1)。我们的方法,称为冻结流线分布方法(FROST),是基于对随机问题的物理理解。确实,我们确定了指导润湿饱和变化的关键随机场,即流体粒子飞行时间和注入时间。通过将饱和度统计数据与全物理蒙特卡罗模拟进行比较,我们说明了这种简单而准确的FROST方法在冻结流线的初步逼近下的性能。此外,我们检查了简化的FROST变量的性能,该变量依赖于喷射时间统计信息的简化。最后,我们介绍如何在FROST框架内有效地计算饱和度的分位数,从而实现可靠的不确定性评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号