首页> 外文期刊>Computational complexity >Derandomizing polynomial identity tests means proving circuit lower bounds
【24h】

Derandomizing polynomial identity tests means proving circuit lower bounds

机译:对多项式身份测试进行非随机化意味着证明电路的下限

获取原文
获取原文并翻译 | 示例

摘要

We show that derandomizing Polynomial Identity Testing is essentially equivalent to proving arithmetic circuit lower bounds for NEXP. More precisely, we prove that if one can test in polynomial time (or even nondeterministic subexponential time, infinitely often) whether a given arithmetic circuit over integers computes an identically zero polynomial, then either (i) NEXP not subset of P/poly or (ii) Permanent is not computable by polynomial-size arithmetic circuits. We also prove a (partial) converse: If Permanent requires superpolynomial-size arithmetic circuits, then one can test in subexponential time whether a given arithmetic circuit of polynomially bounded degree computes an identically zero polynomial.Since Polynomial Identity Testing is a coRP problem, we obtain the following corollary: If RP=P (or even coRP subset of or equal to boolean AND(epsilon>0) NTIME(2(n epsilon)), infinitely often), then NEXP is not computable by polynomial-size arithmetic circuits. Thus establishing that RP=coRP or BPP=P would require proving superpolynomial lower bounds for Boolean or arithmetic circuits. We also show that any derandomization of RNC would yield new circuit lower bounds for a language in NEXP.We also prove unconditionally that NEXPRP does not have polynomial-size Boolean or arithmetic circuits. Finally, we show that NEXP subset of or equal to P/poly if both BPP=P and low-degree testing is in P; here low-degree testing is the problem of checking whether a given Boolean circuit computes a function that is close to some low-degree polynomial over a finite field.
机译:我们表明,对多项式身份测试进行去随机化实质上等同于证明NEXP的算术电路下限。更确切地说,我们证明如果可以在多项式时间内(甚至可以无限次地甚至在不确定的次指数时间内)进行测试,则给定的整数运算电路是否可以计算出完全相同的零多项式,则(i)NEXP不是P / poly的子集,或者( ii)多项式大小的算术电路无法计算永久性。我们还证明了(部分)逆:如果永久性需要超多项式大小的算术电路,则可以在次指数时间内测试给定的多项式有界度的算术电路是否计算出相同的零多项式。由于多项式身份测试是一个CoRP问题,因此我们获得以下推论:如果RP = P(或者甚至无限地等于或等于布尔AND(epsilon> 0)NTIME(2(n epsilon))的coRP子集),则NEXP无法由多项式大小的算术电路计算。因此,确定RP = coRP或BPP = P将需要证明布尔或算术电路的超多项式下界。我们还表明,RNC的任何随机化都会为NEXP中的语言带来新的电路下限。我们还无条件证明NEXPRP没有多项式大小的布尔或算术电路。最后,我们证明如果BPP = P并且低度测试都在P中,则NEXP子集等于或等于P / poly。这里的低阶测试是检查给定的布尔电路是否计算出在有限域上接近某个低阶多项式的函数的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号