首页> 外文期刊>Computational complexity >Hardness Amplification Via Space-efficient Direct Products
【24h】

Hardness Amplification Via Space-efficient Direct Products

机译:通过节省空间的直接产品增加硬度

获取原文
获取原文并翻译 | 示例

摘要

We prove a version of the derandomized Direct Product Lemma for deterministic space-bounded algorithms. Suppose a Boolean function g : {0,1}~n → {0,1} cannot be computed on more than a fraction 1 - δ of inputs by any deterministic time T and space S algorithm, where δ ≤ 1/t for some t. Then for i-step walks w = (v_1,…, v_t) in some explicit d-regular expander graph on 2~n vertices, the function g'(w) =~(def) (g(v_1), …,g(v_t)) cannot be computed on more than a fraction 1 - Ω(tδ) of inputs by any deterministic time ≈ T/d~t - poly(n) and space ≈ S - O(t) algorithm. As an application, by iterating this construction, we get a deterministic linear-space "worst-case to constant average-case" hardness amplification reduction, as well as a family of logspace encodable/decodable error-correcting codes that can correct up to a constant fraction of errors. Logspace encodable/decodable codes (with linear-time encoding and decoding) were previously constructed by Spielman (1996). Our codes have weaker parameters (encoding length is polynomial, rather than linear), but have a conceptually simpler construction. The proof of our Direct Product lemma is inspired by Dinur's remarkable proof of the PCP theorem by gap amplification using expanders (Dinur 2006).
机译:我们证明了用于确定性有界算法的非随机化直接乘积引理的一种版本。假设布尔函数g:{0,1}〜n→{0,1}不能通过任何确定性的时间T和空间S算法对输入的1-δ的小数进行计算,其中某些情况下δ≤1 / t t。然后,对于在2〜n个顶点上某些显式d-正则展开图中的i步走w =(v_1,…,v_t),函数g'(w)=〜(def)(g(v_1),…,g (v_t))不能通过任何确定性的时间≈T / d〜t-poly(n)和空间≈S-O(t)算法对输入的分数1-Ω(tδ)进行计算。作为应用,通过迭代此结构,我们得到了确定性的线性空间“最坏情况到恒定平均情况”硬度放大降低,以及一系列logspace可编码/可解码的纠错码,它们可以纠正多达恒定比例的错误。对数空间可编码/可解码代码(具有线性时间编码和解码)先前由Spielman(1996)构造。我们的代码参数较弱(编码长度是多项式,而不是线性的),但在概念上更简单。 Dinur对PCP定理的出色证明是通过使用扩展器进行间隙放大来证明的,这是我们直接乘积引理的证明(Dinur 2006)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号