首页> 外文期刊>Computational & Mathematical Organization Theory >Detecting botnet signals using process mining
【24h】

Detecting botnet signals using process mining

机译:使用Process Mining检测僵尸网络信号

获取原文
获取原文并翻译 | 示例

摘要

Detecting and elucidating botnets is an active area of research. Using explainable, highly scalable Apache Spark-based artificial intelligence, process mining technologies are presented which illuminate bot activity within terrorist Twitter data. A derived hidden Markov model suggests that bot logic uses information camouflage in order to disguise intentions similar to World War II Nazi propagandists and Soviet-era practitioners of information warfare enhanced with reflexive control. A future effort is presented which strings together best of breed techniques into a composite classification algorithm in order to improve continually the discovery of malicious accounts, understand cross-platform weaponized botnet dynamics, and model adversarial information warfare campaigns recursively.
机译:检测和阐明的僵尸网络是一种活跃的研究领域。 使用可解释的,高度可扩展的Apache基于Appach的人工智能,介绍了过程采矿技术,其中在恐怖主义推特数据中照亮了机器人活动。 衍生的隐马尔可夫模型表明,机器人逻辑使用信息伪装,以伪装类似于第二次世界大战的纳粹宣传者和信息战的苏联时代从业,增强了反思控制。 将来努力汇总了最佳的繁殖技术进入复合分类算法,以便不断地发现恶意账户,了解跨平台武装化的僵尸网络动态,以及递归的模型对抗信息战活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号