首页> 外文期刊>Computational & Mathematical Organization Theory >Errors Associated With Simple Versus Realistic Models
【24h】

Errors Associated With Simple Versus Realistic Models

机译:与简单模型和现实模型相关的错误

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the relative errors associated with simple versus realistic (or science-based) models. We take the perspective of trying to predict what the model will predict as we begin to build the model. Any model building process can get the model "wrong" to a greater or lesser extent by making a theoretical mistake in constructing the model. In addition, every model needs data of some sort, whether it be obtained by experiments, surveys or expert judgment, and the data collection process is filled with error sources. This paper suggests a hypothesis that 1. simple models have a larger variance in their predication of a result than do more realistic models (something most people intuitively agree to), and 2. more realistic models still have a significant probability of an error because the errors in the model building process will result in a probability distribution that ought to be bimodal, trimodal, or higher multimodal. The paper provides evidence to support these statements and draws conclusions about what types of models to generate and when.
机译:本文讨论了与简单模型与现实模型(或基于科学的模型)相关的相对误差。我们从尝试预测模型的角度出发,开始构建模型。任何模型构建过程都可以通过在构建模型时犯理论错误来或多或少地使模型“错误”。此外,每个模型都需要某种类型的数据,无论是通过实验,调查还是专家判断获得的,并且数据收集过程中都充满了误差源。本文提出了一个假设:1.简单模型的结果预测方差要比更现实的模型(大多数人在直觉上都同意)更大;并且2.更现实的模型仍然有很大的错误概率,因为模型构建过程中的错误将导致概率分布应该是双峰,三峰或更高的多峰。本文提供了支持这些陈述的证据,并就生成哪种类型的模型以及何时生成模型得出了结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号