首页> 外文期刊>Computational & Mathematical Organization Theory >Data-to-model: a mixed initiative approach for rapid ethnographic assessment
【24h】

Data-to-model: a mixed initiative approach for rapid ethnographic assessment

机译:数据到模型:快速民族志评估的混合主动方法

获取原文
获取原文并翻译 | 示例

摘要

Rapid ethnographic assessment is used when there is a need to quickly create a socio-cultural profile of a group or region. While there are many forms such an assessment can take, we view it as providing insight into who are the key actors, what are the key issues, sentiments, resources, activities and locations, how have these changed in recent times, and what roles do the various actors play. We propose a mixed initiative rapid ethnographic approach that supports socio-cultural assessment through a network analysis lens. We refer to this as the data-to-model (D2M) process. In D2M, semi-automated computer-based text-mining and machine learning techniques are used to extract networks linking people, groups, issues, sentiments, resources, activities and locations from vast quantities of texts. Human-in-the-loop procedures are then used to tune and correct the extracted data and refine the computational extraction. Computational post-processing is then used to refine the extracted data and augment it with other information, such as the latitude and longitude of particular cities. This methodology is described and key challenges illustrated using three distinct data sets. We find that the data-to-model approach provides a reusable, scalable, rapid approach for generating a rapid ethnographic assessment in which human effort and coding errors are reduced, and the resulting coding can be replicated.
机译:当需要快速创建群体或地区的社会文化特征时,可以使用快速的人种志评估。虽然评估可以采用多种形式,但我们认为它可以洞悉谁是关键角色,关键问题,情感,资源,活动和地点是什么,最近这些变化如何以及扮演什么角色各种演员扮演。我们提出了一种混合主动的快速人种志方法,该方法通过网络分析镜头来支持社会文化评估。我们将此称为数据到模型(D2M)流程。在D2M中,基于计算机的半自动化文本挖掘和机器学习技术用于从大量文本中提取连接人员,群体,问题,情感,资源,活动和位置的网络。然后,使用“人在回路”程序来调整和校正提取的数据并优化计算提取。然后,使用计算后处理来精炼提取的数据,并使用其他信息(例如特定城市的经度和纬度)对其进行扩充。描述了这种方法,并使用三个不同的数据集说明了主要挑战。我们发现,数据到模型的方法为生成快速的人种学评估提供了一种可重用,可伸缩的快速方法,该方法可以减少人工和编码错误,并且可以复制生成的编码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号