首页> 外文期刊>Computational & Mathematical Organization Theory >Inducing models of behavior from expert task performance in virtual environments
【24h】

Inducing models of behavior from expert task performance in virtual environments

机译:从虚拟环境中的专家任务绩效中得出行为模型

获取原文
获取原文并翻译 | 示例

摘要

We developed an end-to-end process for inducing models of behavior from expert task performance through in-depth case study. A subject matter expert (SME) performed navigational and adversarial tasks in a virtual tank combat simulation, using the dTank and Unreal platforms. Using eye tracking and Cognitive Task Analysis, we identified the key goals pursued by and attributes used by the SME, including reliance on an egocentric spatial representation, and on the fly re-representation of terrain in qualitative terms such as "safe" and "risky". We demonstrated methods for automatic extraction of these qualitative higher-order features from combinations of surface features present in the simulation, producing a terrain map that was visually similar to the SME annotated map. The application of decision-tree and instance-based machine learning methods to the transformed task data supported prediction of SME task selection with greater than 95 % accuracy, and SME action selection at a frequency of 10 Hz with greater than 63 % accuracy, with real time constraints placing limits on algorithm selection. A complete processing model is presented for a path driving task, with the induced generative model deviating from the SME chosen path by less than 2 meters on average. The derived attributes also enabled environment portability, with path driving models induced from dTank performance and deployed in Unreal demonstrating equivalent accuracy to those induced and deployed completely within Unreal.
机译:我们开发了一个端到端流程,用于从专家任务执行到深入的案例研究来得出行为模型。主题专家(SME)使用dTank和Unreal平台在虚拟战车战斗模拟中执行了导航和对抗任务。使用眼动追踪和认知任务分析,我们确定了SME追求的主要目标和使用的属性,包括对以自我为中心的空间表示形式的依赖,以及对地形的动态重新表示,例如“安全”和“危险” ”。我们演示了从模拟中存在的表面特征的组合中自动提取这些定性的高阶特征的方法,从而生成了从外观上类似于SME注释地图的地形图。决策树和基于实例的机器学习方法在转换后的任务数据中的应用支持对SME任务选择的预测,其准确度超过95%,并且以10 Hz的频率对SME动作选择进行了准确度大于63%的预测,具有真实时间限制限制了算法的选择。提出了用于路径驱动任务的完整处理模型,其中所生成的生成模型与SME选择的路径偏离平均不到2米。派生的属性还启用了环境可移植性,其路径驱动模型由dTank性能诱导并部署在虚幻引擎中,与完全在虚幻引擎中诱导和部署的路径驱动模型具有同等的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号