首页> 外文期刊>Composites Science and Technology >Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites
【24h】

Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites

机译:短/长玻璃和碳纤维增强复合材料纤维取向和力学性能的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

Fiber reinforced polymer (FRP) composites offer exciting new possibilities for the green automotive industry, owing to their excellent mechanical properties, advantageous weight reduction and economical fuel consumption. In practice, accurately predicting fiber orientation is a critical issue in causing anisotropy in the mechanical properties of the FRP parts. Recently, an objective fiber orientation model, iARD-RPR (Improved Anisotropic Rotary Diffusion model combined with a Retarding Principal Rate model) proved significant in the field of fiber suspension rheology. Using state-of-the-art injection molding simulations, we therefore used the iARD-RPR model to explore the fiber orientation changes for various fiber components in regard to fiber length (short and long fibers) and fiber type (glass and carbon fibers). Under an extreme condition of higher fiber concentration and longer fiber lengths, a thicker core region and a narrow shell are always found in a typical orientation pattern of injection molded FRT parts. More importantly, these predicted orientation distributions provided to micromechanical material modeling computation of mechanical properties aid in the discussion on the reinforcing ability of short/long fibers and glass/carbon fibers based on the numerical simulation results. Comparisons with experimental data are also presented herein. (C) 2017 Elsevier Ltd. All rights reserved.
机译:纤维增强聚合物(FRP)复合材料由于其出色的机械性能,有利的重量减轻和经济的燃料消耗,为绿色汽车行业提供了令人兴奋的新可能性。实际上,准确预测纤维取向是导致FRP零件机械性能各向异性的关键问题。最近,客观的纤维取向模型,iARD-RPR(改进的各向异性旋转扩散模型与阻滞主速率模型相结合)在纤维悬浮流变学领域被证明具有重要意义。因此,使用最新的注塑成型模拟,我们使用iARD-RPR模型来研究各种纤维组分在纤维长度(短纤维和长纤维)和纤维类型(玻璃纤维和碳纤维)方面的纤维取向变化。在更高的纤维集中度和更长的纤维长度的极端条件下,通常会在注塑FRT零件的典型取向图中发现较厚的芯区和较窄的壳体。更重要的是,这些提供给机械性能的微机械材料建模计算的预测取向分布有助于基于数值模拟结果讨论短/长纤维和玻璃/碳纤维的增强能力。本文还提供了与实验数据的比较。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号