首页> 外文期刊>Composites >Investigation of laser pulse fatigue effect on unpainted and painted CFRP structures
【24h】

Investigation of laser pulse fatigue effect on unpainted and painted CFRP structures

机译:激光脉冲疲劳对未喷涂和喷涂CFRP结构的影响

获取原文
获取原文并翻译 | 示例

摘要

Laser ultrasonic based nondestructive evaluation (NDE) techniques are being increasingly used in aerospace industries. Generally, the service lifetime for an aircraft could be more than 25 years. Thus, the composite structures of the aircraft could be susceptible to laser pulse fatigue damage caused by the laser pulse energy in the long-term repetitive maintenance inspection. In this paper, the effect of repeat laser pulse scanning on the mechanical characteristics of unpainted and painted CFRP specimens (USN175BX Carbon UD prepreg, Bisphenol A epoxy resin) is investigated to verify the reliability regarding the use of laser ultrasonic scanning based NDE techniques on the inspection of the CFRP structure. A high-speed laser ultrasonic scanning system is setup to perform repeat scanning of 1300 times on both CFRP specimens at the five laser pulse energy levels using the 532-nm and 1064-nm Q-switched continuous wave lasers. Elastic modulus assessment based on the ultrasonic Lamb wave pitch-catch method is used and the surface condition of the scanned area is investigated by a microscope. As a result, the laser pulse flu-ences that is shown in this paper are suitable for the long-term repetitive maintenance inspection in unpainted and painted CFRP structure even if it demonstrates an embrittlement phenomenon similar to the modulus measurement resolution in the unpainted CFRP specimen. In addition, the laser pulse flu-ence for maximum signal-to-noise ratio without any damage is investigated in both unpainted and painted CFRP specimens. As a result, both 102.45 mJ/cm~2 in unpainted CFRP specimen and 51 mJ/cm~2 in painted CFRP specimen can be the laser pulse energy for the maximum signal-to-noise ratio without any damage.
机译:基于激光超声的无损评估(NDE)技术正越来越多地用于航空航天工业。通常,飞机的使用寿命可能超过25年。因此,在长期的重复维护检查中,飞机的复合结构可能容易受到激光脉冲能量引起的激光脉冲疲劳损坏。在本文中,研究了重复激光脉冲扫描对未上漆和上漆的CFRP试样(USN175BX碳UD预浸料,双酚A环氧树脂)的机械特性的影响,以验证在基于NDE的激光超声扫描技术上使用激光的可靠性。检查CFRP结构。设置了高速激光超声扫描系统,以使用532nm和1064nm调Q连续波激光器在五个激光脉冲能量水平上对两个CFRP样品进行1300次重复扫描。使用基于超声波兰姆波俯仰捕捉法的弹性模量评估,并通过显微镜研究扫描区域的表面状况。结果,本文显示的激光脉冲通量即使在未涂漆的CFRP样品中表现出类似于模量测量分辨率的脆化现象,也适用于未涂漆和涂漆的CFRP结构的长期重复维护检查。 。此外,在未上漆和上漆的CFRP样品中,都对最大脉冲信噪比无任何损坏的激光脉冲通量进行了研究。结果,未涂漆的CFRP样品中的102.45 mJ / cm〜2和涂漆的CFRP样品中的51 mJ / cm〜2都是最大信噪比的激光脉冲能量,而没有任何损坏。

著录项

  • 来源
    《Composites》 |2014年第3期|343-351|共9页
  • 作者单位

    Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea,LANL-CBNU Engineering Institute Korea, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea;

    Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea,LANL-CBNU Engineering Institute Korea, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea;

    Department of Aerospace Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea,Department of Mechatronics Engineering, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea,LANL-CBNU Engineering Institute Korea, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea;

    LANL-CBNU Engineering Institute Korea, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju, Chonbuk 561-756, South Korea,Aeronautical Technology Directorate, Agency for Defense Development, Yeseong-gu, P.O. Box 35-7, Daejeon 305-600, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A. Carbon fiber; B. Fatigue; D. Ultrasonics; D. Non-destructive testing;

    机译:A.碳纤维;B.疲劳;D.超声波;D.无损检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号