首页> 外文期刊>Composites >Plastic strain localization in periodic materials with wavy brick-and-mortar architectures and its effect on the homogenized response
【24h】

Plastic strain localization in periodic materials with wavy brick-and-mortar architectures and its effect on the homogenized response

机译:波浪形实体结构在周期性材料中的塑性应变局部化及其对均质响应的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Biomimetic or bio-inspired microstructures are increasingly being explored as a source of inspiration for material innovation. The goal of this study is to aid future design of biomimetic materials by conducting analysis of material architectures that resemble brick-and-mortar microstructures found in nacre. Specifically, this study explores the thus-far undocumented combined effects of waviness and platelet architecture on composite material ductility under unidirectional loading parallel and perpendicular to the reinforcing platelets. Model material architectures, comprised of discontinuous silicon carbide platelets suspended in aluminum matrix, that mimic nacre's microstructure were constructed for analysis with the finite-volume direct averaging micromechanics (FVDAM) theory. The silicon carbide platelets play the role of nacre's load-bearing calcite phase while the aluminum matrix mimics the combined effects of hierarchical load transferring mechanisms and organic protein matrix. The FVDAM simulations indicate that the introduction of waviness leads to an increase in ductility. Just as significant to material performance is the degree of relative shift between wavy rows of discontinuous hard-phase platelets. The effect of shift on ductility was found to be most significant when introduced to a degree that disrupted unit cell symmetry and when applied to configurations with low amplitude-to-wavelength ratios. The differences in the observed homogenized response are rooted in the local microstructure-controlled stress and resulting plastic strain fields that are identified in this investigation.
机译:仿生或受生物启发的微观结构正越来越多地被探索为材料创新的灵感来源。这项研究的目的是通过对类似于珍珠母中砖和砂浆微结构的材料结构进行分析,来帮助仿生材料的未来设计。具体而言,本研究探讨了迄今为止在平行和垂直于增强血小板的单向载荷下,波纹度和血小板结构对复合材料延展性的无证综合作用。使用有限体积直接平均微力学(FVDAM)理论分析模型材料结构,该模型结构由悬浮在铝基质中的不连续碳化硅片组成,用于模拟珍珠质的微观结构。碳化硅血小板扮演着珍珠质的方解石相的角色,而铝基质则模仿了分层载荷传递机制和有机蛋白质基质的综合作用。 FVDAM模拟表明波纹的引入导致延展性的增加。对材料性能同样重要的是,不连续的硬相血小板的波浪状行之间的相对位移程度。当引入破坏单位晶格对称性的程度并应用于具有低振幅/波长比的配置时,发现位移对延展性的影响最为显着。观察到的均质化响应中的差异根源于局部微观结构控制的应力以及由此研究确定的塑性应变场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号