...
首页> 外文期刊>Composites >Multilayered plate elements accounting for refined theories and node-dependent kinematics
【24h】

Multilayered plate elements accounting for refined theories and node-dependent kinematics

机译:多层板单元考虑了精细的理论和节点相关的运动学

获取原文
获取原文并翻译 | 示例

摘要

In the present work, a new class of finite elements (FEs) for the analysis of metallic and composite plates is proposed. By making use of node-by-node variable plate theory assumptions, the new finite element allows for the simultaneous analysis of different subregions of the problem domain with different kinematics and accuracy, in a global/local sense. As a consequence, the computational costs can be reduced drastically by assuming refined theories only in those zonesodes of the structural domain where the resulting strain and stress states present a complex distribution. On the contrary, computationally cheaper, low-order kinematic assumptions can be used in the remaining parts of the plate where a localized detailed analysis is not necessary. The primary advantage of the present variable-kinematics element and related global/local approach is that no ad-hoc techniques and mathematical artifices are required to mix the fields coming from two different and kinematically incompatible adjacent elements, because the plate structural theory varies within the finite element itself. In other words, the structural theory of the plate element is a property of the FE node in this present approach, and the continuity between two adjacent elements is ensured by adopting the same kinematics at the interface nodes. In this paper, the novel variable-kinematics plate element is implemented by utilizing the Carrera Unified Formulation (CUF), whose main advantage consists in the possibility of keeping the order of the expansion of the state variables along the thickness of the plate as a free parameter of the model. According to CUF, Taylor polynomial expansions are used to describe the through-the-thickness unknowns to develop classical to higher-order Equivalent Single Layer (ESL) plate theories. Furthermore, the Mixed Interpolated Tensorial Components (MITC) method is employed to contrast the shear locking phenomenon. Several numerical investigations are carried out to validate and demonstrate the accuracy and efficiency of the present plate element, including comparison with various closed-form and FE solutions from the literature. (C) 2017 Published by Elsevier Ltd.
机译:在当前的工作中,提出了用于分析金属板和复合板的一类新的有限元(FE)。通过使用逐个节点的可变板理论假设,新的有限元可以在全局/局部意义上同时分析具有不同运动学和准确性的问题域的不同子区域。结果,通过仅在结构域的那些区域/节点中假设改进的理论即可大幅度降低计算成本,在这些区域/节点中所得的应变和应力状态呈现出复杂的分布。相反,可以在板的其余部分中使用计算便宜的低阶运动学假设,而无需进行局部详细分析。本可变运动学元素和相关全局/局部方法的主要优点是,不需要混合任何来自两个不同且运动学上不兼容的相邻元素的场的特殊技术和数学技巧,因为板结构理论在内部有限元本身。换句话说,在本方法中,板单元的结构理论是有限元节点的属性,并且通过在接口节点处采用相同的运动学来确保两个相邻单元之间的连续性。在本文中,通过使用Carrera统一公式(CUF)实现了新型的可变运动学板元,其主要优点在于可以将状态变量沿板厚的扩展顺序保持为自由。模型的参数。根据CUF的研究,泰勒多项式展开式被用来描述整个厚度的未知数,以发展从经典到高阶的等效单层(ESL)板理论。此外,采用混合内插张量分量(MITC)方法来对比剪切锁定现象。进行了一些数值研究,以验证和证明本发明板元件的准确性和效率,包括与文献中的各种封闭形式和有限元解决方案进行比较。 (C)2017由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号