Composite panels are widely used in aeronautic and aerospace structures due to their high strength/weight ratio. The stiffness and the strength in the thickness direction of laminated composite panels is poor since no fibres are present in that direction and out-of plane impact loading is considered potentially dangerous, mainly because the damage may be left undetected. Impact loading in composite panels leads to damage with matrix cracking, inter-laminar failure and eventually fibre breakage for higher impact energies. Even when no visible impact damage is observed at the surface on the point of impact, matrix cracking and inter-laminar failure can occur, and the carrying load of the composite laminates is considerably reduced. The greatest reduction in loading is observed in compression due to laminae buckling in the delaminated areas. The objective of this study is to determine the mechanisms of the damage growth of impacted composite laminates when subjected to compression after impact loading. For this purpose a series of impact and compression after impact tests were carried out on composite laminates made of carbon fibre reinforced epoxy resin matrix. An instrumented drop-weight-testing machine and modified compression after impact testing equipment were used together with a C-scan Ultrasonic device for the damage identification. Four stacking sequences of two different epoxy resins in carbon fibres representative of four different elastic behaviours and with a different number of interfaces were used. Results showed that the delaminated area due to impact loading depends on the number of interfaces between plies. Two buckling failure mechanisms were identified during compression after impact, which are influenced more by the delamination area than by the stacking sequence
展开▼