首页> 外文期刊>Composite Structures >In-plane modal studies of arbitrary laminated triangular plates with elastic boundary constraints by the Chebyshev-Ritz approach
【24h】

In-plane modal studies of arbitrary laminated triangular plates with elastic boundary constraints by the Chebyshev-Ritz approach

机译:Chebyshev-ritz方法具有弹性边界约束的任意层压三角形板的面内模态研究

获取原文
获取原文并翻译 | 示例

摘要

Firstly, the Chebyshev-Ritz method is applied to the free in-plane vibration of arbitrary shaped laminated triangular plates with elastic boundary conditions. In order to facilitate the calculation of energy, the arbitrary shaped triangular laminated plate is mapped into a square plate by the coordinate transformation. The constitutive equation of laminated materials is constructed by the equivalent monolayer theory. The displacement functions of the square plate after transformation are generally expressed as two-dimensional Chebyshev polynomials multiplied by coefficients. By means of artificial virtual spring technology, the arbitrary elastic boundary conditions of the plate can be obtained by changing the stiffness values of each spring. The in-plane free vibration characteristics of the triangular laminated plate under different boundary conditions are calculated and the accuracy of this method is verified by comparing with finite element results and experimental results. In this paper, modal experiments of three different triangular plates with free boundary and cantilever support boundary are carried out. The comparison results show that the present method has good convergence, high efficiency and satisfactory actuarial accuracy. Finally, novelty numerical analysis is carried out, the influence of geometrical properties, material parameters and boundary conditions on in-plane modal characteristics of laminated triangular plates are studied in detail.
机译:首先,将Chebyshev-ritz方法应用于具有弹性边界条件的任意形状层叠三角形板的自由面内振动。为了便于计算能量,通过坐标转换将任意形状的三角形层压板映射到方形板中。层压材料的本构体方程由等同的单层理论构成。变换后平方板的位移功能通常表示为二维Chebyshev多项式乘以系数。通过人造虚拟弹簧技术,通过改变每个弹簧的刚度值,可以获得板的任意弹性边界条件。计算不同边界条件下三角形层压板的平面自由振动特性,并通过与有限元结果和实验结果进行比较来验证该方法的准确性。在本文中,进行了具有自由边界和悬臂支撑边界的三个不同三角形板的模态实验。比较结果表明,本方法具有良好的收敛性,高效率和令人满意的精致精度。最后,详细研究了新颖性的数值分析,详细研究了几何特性,材料参数和边界条件对层叠三角形板内平面内模态特性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号