首页> 外文期刊>Composite Structures >Non-asymptotic modelling of dynamics and stability for visco-elastic periodic beams on a periodic damping foundation
【24h】

Non-asymptotic modelling of dynamics and stability for visco-elastic periodic beams on a periodic damping foundation

机译:周期阻尼基础粘弹性周期梁动力学和稳定性的非渐近模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper mathematical modelling of vibrations and stability problems for slender visco-elastic periodic beams is considered. In order to take into account the effect of microstructure a certain non-asymptotic approach is applied, called the tolerance modelling method. This technique allows to replace the equation with non-continuous, highly oscillating, periodic coefficients by a system of differential equations with constant coefficients. Moreover, the derived equations describe the effect of microstructure on the overall behaviour of the beams under consideration. In the framework of the tolerance modelling governing equations of two different tolerance models can be obtained - the standard and the general, under weakened assumptions. To evaluate the proposed general tolerance model obtained results are compared with results calculated within the known asymptotic homogenization, i.e. by the asymptotic model. In this note mathematical models describing investigated beams are only presented and illustrated by a simple example.
机译:在本文中,考虑了对细长粘弹性周期光束的振动和稳定性问题的数学建模。为了考虑微观结构的效果,应用了某些非渐近方法,称为公差建模方法。该技术允许通过具有恒定系数的微分方程的系统用非连续,高度振荡,周期性系数替换等式。此外,衍生方程描述了微观结构对所考虑的光束的整体行为的影响。在可以获得两种不同公差模型的公差建模的框架中,可以获得 - 标准和一般,在弱化假设下。为了评价所提出的一般耐受模型,将结果与在已知的渐近均质化内计算的结果进行比较,即通过渐近模型。在本说明中,仅通过简单的示例呈现和说明描述所研究的光束的数学模型。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号