首页> 外文期刊>Composite Structures >Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method
【24h】

Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method

机译:非线性强制振动,使用多种尺度法测定热环境中的渗透浅壳分析

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the non-linear vibrations of stiffened imperfect functionally graded double-curved shallow shells, as rested on nonlinear elastic foundations. The shells are exposed to external harmonic excitation and are placed in the thermal situations. The modeling of shells is derived according to the classical shell theory and the non-linear geometric von Karman relationships. It is considered that the distribution of material properties changes along the thickness direction based on a power law index. The smeared stiffener technique is considered to model the stiffened shells. An approximation, according to Galerkin's approach, is utilized to reduction of the shell governing equations into the non-linear coupled ordinary differential relations. The ODE equations are analytically solved and analyzed through the perturbation methodology for investigating the resonance behavior of shells. Simulation results are reported to examine the influences of stiffeners, initial imperfection, foundation coefficients, thermal environment, and geometrical characteristics on the non-linear primary resonance response of doubly curved shallow shells. Also, the nonlinear dynamic behaviors are analyzed by numerical methods through the bifurcation diagrams, and the nonlinear dynamical behaviors of the shell for different value of parameters are examined.
机译:本研究研究了加强缺乏功能梯度双弯曲浅壳的非线性振动,如非线性弹性基础所休息。壳体暴露于外部谐波激发,并放置在热局势中。根据经典的壳理论和非线性几何von Karman关系导出壳的建模。认为材料特性的分布沿着电力法指数沿厚度方向变化。涂抹的加强技术被认为是模拟加强的壳体。根据Galerkin的方法,近似用于将壳体控制方程的壳体控制成非线性耦合常见关系。通过针对研究壳的共振行为的扰动方法进行分析解决和分析oDE方程。据报道,仿真结果检查加强件,初始缺陷,基础系数,热环境和几何特征对双弯曲浅壳的非线性初级共振响应的影响。而且,通过分叉图通过数值方法分析非线性动力学行为,并且检查了用于不同参数值的外壳的非线性动力学行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号