...
首页> 外文期刊>Composite Structures >Impact response characteristics and meso-evolution mechanism of functionally gradient brittle materials with pore hole damage
【24h】

Impact response characteristics and meso-evolution mechanism of functionally gradient brittle materials with pore hole damage

机译:孔隙孔损伤功能梯度脆性材料的影响响应特性和中学演化机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Functionally graded brittle materials will inevitably produce defects such as micropores in the preparation process, which will significantly affect its impact response. Understanding its mesoscopic evolution mechanism and macro-response law will make micropores favorable for the engineering application of functionally graded brittle materials. By establishing a lattice-spring model that can accurately represent the elastic properties and fracture evolution of materials, this paper reveals the influence of pore evolution on functionally graded brittle materials. Collapse deformation caused by impacted holes and slip deformation caused by shear cracks emitted from holes produce significant stress relaxation and modulate the propagation of shock waves. In porous functionally graded brittle materials, shock waves are gradually broadened into elastic waves and deformation waves. The deformation wave is macroscopically similar to the plastic wave of ductile metal material, and corresponds to the collapse deformation and slip deformation process on the micro-level. Porosity in the sample determines the elastic limit of functionally graded brittle materials. Porosity, material parameters, and impact velocity jointly affect the propagation speed of the deformation wave and the stress amplitude in the final state of impact. Functionally graded brittle materials with micropores have potential application value in shock wave complex loading experiments, failure prevention of functional materials, building protection, etc. The obtained impact response laws are helpful to optimize the design of impact response and dynamic mechanical properties of functionally graded brittle materials for specific applications.
机译:功能渐进的脆性材料将不可避免地在制备过程中不可避免地产生诸如微孔的缺陷,这将显着影响其影响响应。了解其介绍演化机制和宏观反应法将使微孔有利于功能渐进脆性材料的工程应用。通过建立能够准确代表材料的弹性性能和骨折演变的格子弹簧模型,本文揭示了孔隙越型对功能梯度脆性材料的影响。由孔发出的剪切裂纹引起的撞击孔和滑动变形引起的坍塌变形产生显着的应力松弛并调节冲击波的传播。在多孔功能梯度脆性材料中,冲击波逐渐宽泛地变成弹性波和变形波。变形波在延展性金属材料的塑料波宏观上,并且对应于微观水平上的塌陷变形和滑动变形过程。样品中的孔隙率决定了功能梯度脆性材料的弹性极限。孔隙率,材料参数和冲击速度共同影响变形波的传播速度和撞击状态下的应力幅度。功能渐进的脆性材料具有微孔的潜在应用价值在冲击波复合物载荷实验中,功能材料的失败预防,建筑物保护等。所获得的影响响应法有助于优化功能分级脆性的影响和动态力学性能的设计特定应用的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号