首页> 外文期刊>Composite Structures >Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission
【24h】

Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission

机译:语音发射复合风力涡轮机叶片损伤模式识别与奇异信号检测

获取原文
获取原文并翻译 | 示例

摘要

Some challenging issues emerge for the health monitoring of composite wind turbine blades under the intrinsic noise of fatigue loading, including damage mode identification and singular signal detection. This work performs health monitoring of a 59.5-m-long composite wind turbine blade under fatigue loads by acoustic emission (AE) technique. First, the original AE waveform is acquired after wave attenuation calibration and sensor array arrangement. Second, a waveform-based feature extraction method is developed based on the wavelet packet decomposition (WPD) to capture the information contained in original AE signals, which covers all features for reconstructed signals in the frequency domain. Without the requirements for signal preprocessing, clustering analysis is conducted for damage mode identification and singular signal detection based on the extracted features. Third, two hyperparameters, including the scatter number and the selection of wavelet basis function, are demonstrated to show no effect on the results, indicating the robustness of the method. This method is proved to be effective and feasible for health condition monitoring of the blade.
机译:一些具有挑战性的问题出现了复合风力涡轮机叶片在疲劳载荷内部噪声下的健康监测,包括损伤模式识别和奇异信号检测。这项工作通过声发射(AE)技术在疲劳负荷下进行59.5米长的复合风力涡轮机叶片的健康监测。首先,在波衰减校准和传感器阵列布置后获取原始AE波形。其次,基于小波分组分解(WPD)开发了基于波形的特征提取方法,以捕获原始AE信号中包含的信息,其涵盖频域中的重建信号的所有特征。如果没有对信号预处理的要求,则基于提取的特征对损坏模式识别和奇异信号检测进行聚类分析。第三,两个超参数,包括散射数和小波基函数的选择,以显示对结果没有影响,表明该方法的稳健性。该方法被证明是对刀片的健康状况监测有效和可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号