首页> 外文期刊>Composite Structures >Machine learning in composites manufacturing: A case study of Automated Fiber Placement inspection
【24h】

Machine learning in composites manufacturing: A case study of Automated Fiber Placement inspection

机译:复合材料制造中的机器学习 - 以自动纤维放置检验为例

获取原文
获取原文并翻译 | 示例

摘要

The large-scale adoption of composite materials in industry has allowed for a greater freedom in design and function of structures and their respective components. However, the freedom of material choice has resulted in increased complexity in manufacturing. Machine learning (ML) and Artificial Intelligence (AI) are currently being explored for a number of advanced manufacturing applications, and their applicability has begun to extend into the composites manufacturing realm. In this document, a comprehensive overview of machine learning applications in composites manufacturing will be presented with discussions on a novel inspection software developed for the Automated Fiber Placement (AFP) process at the University of South Carolina utilizing an ML vision system. This vision system allows for defect data to be fully integrated into the manufacturing process, allowing for the ML inspection system to influence several chains in the composites product lifecycle management.
机译:工业中的复合材料的大规模采用允许在结构的设计和功能和各自的组分方面具有更大的自由度。然而,材料选择的自由导致制造业的复杂性增加。目前正在探索机器学习(ML)和人工智能(AI),为许多先进的制造应用探索,其适用性已开始延伸到复合材料制造领域。在本文件中,将讨论复合材料制造中的机器学习应用程序的全面概述,并在南卡罗来纳大学利用ML Vision系统开发的新型检查软件的讨论。该视觉系统允许缺陷数据完全集成到制造过程中,允许ML检查系统在复合材料产品生命周期管理中影响多个链条。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号